8,074 research outputs found
Disorder Effects in Fluctuating One-Dimensional Interacting Systems
The zero temperature localization of interacting electrons coupled to a
two-dimensional quenched random potential, and constrained to move on a
fluctuating one-dimensional string embedded in the disordered plane, is studied
using a perturbative renormalization group approach. In the reference frame of
the electrons the impurities are dynamical and their localizing effect is
expected to decrease. We consider several models for the string dynamics and
find that while the extent of the delocalized regime indeed grows with the
degree of string fluctuations, the critical interaction strength, which
determines the localization-delocalization transition for infinitesimal
disorder,does not change unless the fluctuations are softer than those of a
simple elastic string.Comment: 15 page
On the Validity of the Tomonaga Luttinger Liquid Relations for the One-dimensional Holstein Model
For the one-dimensional Holstein model, we show that the relations among the
scaling exponents of various correlation functions of the Tomonaga Luttinger
liquid (LL), while valid in the thermodynamic limit, are significantly modified
by finite size corrections. We obtain analytical expressions for these
corrections and find that they decrease very slowly with increasing system
size. The interpretation of numerical data on finite size lattices in terms of
LL theory must therefore take these corrections into account. As an important
example, we re-examine the proposed metallic phase of the zero-temperature,
half-filled one-dimensional Holstein model without employing the LL relations.
In particular, using quantum Monte Carlo calculations, we study the competition
between the singlet pairing and charge ordering. Our results do not support the
existence of a dominant singlet pairing state.Comment: 7 page
Evidence of Electron Fractionalization from Photoemission Spectra in the High Temperature Superconductors
In the normal state of the high temperature superconductors
Bi_2Sr_2CaCu_2O_{8+delta} and La_{2-x}Sr_{x}CuO_4, and in the related ``stripe
ordered'' material La_1.25Nd_0.6Sr_0.15CuO_4, there is sharp structure in the
measured single hole spectral function A(k,w) considered as a function of k at
fixed small binding energy w. At the same time, as a function of w at fixed k
on much of the putative Fermi surface, any structure in A(k,w), other than the
Fermi cutoff, is very broad. This is characteristic of the situation in which
there are no stable excitations with the quantum numbers of the electron, as is
the case in the one dimensional electron gas.Comment: Published versio
The Spectrum of Pluto, 0.40 - 0.93 m I. Secular and longitudinal distribution of ices and complex organics
Context. During the last 30 years the surface of Pluto has been
characterized, and its variability has been monitored, through continuous
near-infrared spectroscopic observations. But in the visible range only few
data are available. Aims. The aim of this work is to define the Pluto's
relative reflectance in the visible range to characterize the different
components of its surface, and to provide ground based observations in support
of the New Horizons mission. Methods. We observed Pluto on six nights between
May and July 2014, with the imager/spectrograph ACAM at the William Herschel
Telescope (La Palma, Spain). The six spectra obtained cover a whole rotation of
Pluto (Prot = 6.4 days). For all the spectra we computed the spectral slope and
the depth of the absorption bands of methane ice between 0.62 and 0.90 m.
To search for shifts of the center of the methane bands, associated with
dilution of CH4 in N2, we compared the bands with reflectances of pure methane
ice. Results. All the new spectra show the methane ice absorption bands between
0.62 and 0.90 m. The computation of the depth of the band at 0.62 m
in the new spectra of Pluto, and in the spectra of Makemake and Eris from the
literature, allowed us to estimate the Lambert coefficient at this wavelength,
at a temperature of 30 K and 40 K, never measured before. All the detected
bands are blue shifted, with minimum shifts in correspondence with the regions
where the abundance of methane is higher. This could be indicative of a
dilution of CH4:N2 more saturated in CH4. The longitudinal and secular
variations of the parameters measured in the spectra are in accordance with
results previously reported in the literature and with the distribution of the
dark and bright material that show the Pluto's albedo maps from New Horizons.Comment: This manuscript may change and improve during the reviewing process.
The data reduction and calibration is reliable and has been checked
independently using different reduction approaches. The data will be made
publicily available when the paper is accepted. If you need them before,
please, contact the autho
Scanning Tunneling Spectroscopy on the novel superconductor CaC6
We present scanning tunneling microscopy and spectroscopy of the newly
discovered superconductor CaC. The tunneling conductance spectra, measured
between 3 K and 15 K, show a clear superconducting gap in the quasiparticle
density of states. The gap function extracted from the spectra is in good
agreement with the conventional BCS theory with = 1.6 0.2
meV. The possibility of gap anisotropy and two-gap superconductivity is also
discussed. In a magnetic field, direct imaging of the vortices allows to deduce
a coherence length in the ab plane 33 nm
Anisotropy in the helicity modulus of a quantum 3D XY-model: application to YBCO
We present a variational study of the helicity moduli of an anisotropic
quantum three-dimensional (3D) XY-model of YBCO in superconducting state. It is
found that both the ab-plane and the c-axis helicity moduli, which are
proportional to the inverse square of the corresponding magnetic field
penetration depth, vary with temperature T as T to the fourth power in the zero
temperature limit. Moreover, the c-axis helicity modulus drops with temperature
much faster than the ab-plane helicity modulus because of the weaker Josephson
couplings along the c-axis compared to those along the ab-plane. These findings
are in disagreement with the experiments on high quality samples of YBCO.Comment: 9 pages, 1 figur
- …