5,143 research outputs found

    Heritability of testosterone levels in 12-year-old twins and its relation to pubertal development

    Get PDF
    The aim of this study was to estimate the heritability of variation in testosterone levels in 12-year-old children, and to explore the overlap in genetic and environmental influences on circulating testosterone levels and androgen dependent pubertal development. Midday salivary testosterone samples were collected on two consecutive days in a sample of 183 unselected twin pairs. Androgen induced pubertal development was assessed using self report Tanner scales of pubic hair development (boys and girls) and genital development (boys). A significant contribution of genetic effects to the variance in testosterone levels was found. Heritability was approximately 50% in both boys and girls. The remaining proportion of the variance in testosterone levels could be explained by non-shared environmental influences. The relatively high correlation between testosterone levels of opposite sex dizygotic twins suggests that sex differences in genes influencing variation in testosterone levels have not yet developed in pre- and early puberty. Variance in pubertal development was explained by a large genetic component, moderate shared environmental influences, and a small non-shared environmental effect. Testosterone levels correlated moderately (r = .31) with pubertal development; the covariance between testosterone levels and pubertal development was entirely accounted for by genetic influences

    Mode-coupling theory and the fluctuation-dissipation theorem for nonlinear Langevin equations with multiplicative noise

    Full text link
    In this letter, we develop a mode-coupling theory for a class of nonlinear Langevin equations with multiplicative noise using a field theoretic formalism. These equations are simplified models of realistic colloidal suspensions. We prove that the derived equations are consistent with the fluctuation-dissipation theorem. We also discuss the generalization of the result given here to real fluids, and the possible description of supercooled fluids in the aging regime. We demonstrate that the standard idealized mode-coupling theory is not consistent with the FDT in a strict field theoretic sense.Comment: 14 pages, to appear in J. Phys.

    Generation of defects and disorder from deeply quenching a liquid to form a solid

    Full text link
    We show how deeply quenching a liquid to temperatures where it is linearly unstable and the crystal is the equilibrium phase often produces crystalline structures with defects and disorder. As the solid phase advances into the liquid phase, the modulations in the density distribution created behind the advancing solidification front do not necessarily have a wavelength that is the same as the equilibrium crystal lattice spacing. This is because in a deep enough quench the front propagation is governed by linear processes, but the crystal lattice spacing is determined by nonlinear terms. The wavelength mismatch can result in significant disorder behind the front that may or may not persist in the latter stage dynamics. We support these observations by presenting results from dynamical density functional theory calculations for simple one- and two-component two-dimensional systems of soft core particles.Comment: 25 pages, 11 figure

    Exploring Agricultural Production Systems and Their Fundamental Components with System Dynamics Modelling

    Get PDF
    Agricultural production in the United States is undergoing marked changes due to rapid shifts in consumer demands, input costs, and concerns for food safety and environmental impact. Agricultural production systems are comprised of multidimensional components and drivers that interact in complex ways to influence production sustainability. In a mixed-methods approach, we combine qualitative and quantitative data to develop and simulate a system dynamics model that explores the systemic interaction of these drivers on the economic, environmental and social sustainability of agricultural production. We then use this model to evaluate the role of each driver in determining the differences in sustainability between three distinct production systems: crops only, livestock only, and an integrated crops and livestock system. The result from these modelling efforts found that the greatest potential for sustainability existed with the crops only production system. While this study presents a stand-alone contribution to sector knowledge and practice, it encourages future research in this sector that employs similar systems-based methods to enable more sustainable practices and policies within agricultural production

    P-glycoprotein and metallothionein expression and resistance to chemotherapy in osteosarcoma.

    Get PDF
    The expression of the drug resistance (DR) mediators P-glycoprotein (P-gp) and the metallothioneins (MT) was assessed immunohistochemically in biopsy material from patients with high-grade malignant osteosarcoma (OS). No significant difference was found in survival rate between expressors of both P-gp and MT and non-expressors. Thus, it was concluded that lack of expression of these two drug resistance-related proteins does not appear to confer any advantage in terms of patient survival in osteosarcoma

    Thermodynamically consistent description of the hydrodynamics of free surfaces covered by insoluble surfactants of high concentration

    Get PDF
    In this paper we propose several models that describe the dynamics of liquid films which are covered by a high concentration layer of insoluble surfactant. First, we briefly review the 'classical' hydrodynamic form of the coupled evolution equations for the film height and surfactant concentration that are well established for small concentrations. Then we re-formulate the basic model as a gradient dynamics based on an underlying free energy functional that accounts for wettability and capillarity. Based on this re-formulation in the framework of nonequilibrium thermodynamics, we propose extensions of the basic hydrodynamic model that account for (i) nonlinear equations of state, (ii) surfactant-dependent wettability, (iii) surfactant phase transitions, and (iv) substrate-mediated condensation. In passing, we discuss important differences to most of the models found in the literature.Comment: 31 pages, 2 figure

    Investigations Using Laboratory Testbeds to Interpret Flight Instrument Datasets from Mars Robotic Missions

    Get PDF
    The Astromaterials Research and Exploration Science Directorate at the NASA Johnson Space Center (JSC) has laboratory instrumentation that mimic the capabilities of corresponding flight instruments to enable interpretation of datasets returned from Mars robotic missions. The lab instruments have been and continue to be applied to datasets for the Moessbauer Spectrometer (MB) on the Mars Exploration Rovers (MER), the Thermal & Evolved Gas Analyzer (TEGA) on the Mars Phoenix Scout, the CRISM instrument on the Mars Reconnaissance Orbiter Missions and will be applied to datasets for the Sample Analysis at Mars (SAM), Chemistry and Mineralogy (CheMin) and Chemistry & Camera (ChemCam) instruments onboard the Mars Science Laboratory (MSL). The laboratory instruments can analyze analog samples at costs that are substantially lower than engineering models of flight instruments, but their success to enable interpretation of flight data depends on how closely their capabilities mimic those of the flight instrument. The JSC lab MB instruments are equivalent to the MER instruments except without flight qualified components and no reference channel Co-57 source. Data from analog samples were critical for identification of Mg-Fe carbonate at Gusev crater. Fiber-optic VNIR spectrometers are used to obtain CRISM-like spectral data over the range 350-2500 nm, and data for Fephyllosilicates show irreversible behavior in the electronic transition region upon dessication. The MB and VNIR instruments can be operated within chambers where, for example, the absolute H2O concentration can be measured and controlled. Phoenix's TEGA consisted of a calorimeter coupled to a mass spectrometer (MS). The JSC laboratory testbed instrument consisted of a differential scanning calorimeter (DSC) coupled to a MS configured to operate under total pressure (12 mbar), heating rate (20 C/min), and purge gas composition (N2) analogous to the flight TEGA. TEGA detected CO2 release at both low (400-680 C) and high (725-820 C) temperature and an endothermic reaction in concert with the high temperature release. The high-temperature thermal decomposition is consistent with calcite, dolomite, or ankerite, (3-6 wt.%) or any combination of these phase based upon laboratory testbed experiments. Recent laboratory experiments suggest that the low temperature CO2 release was caused by a reaction between calcium carbonate and hydrated magnesium perchlorate; although, CO2 release by the oxidation of organic materials and Fe-/Mg-rich carbonates cannot be ruled out. MSL landed in Gale crater on August 5, 2012. Although numerous analog samples have been analyzed on the JSC laboratory testbeds, no SAM, CheMin, or ChemCam analyses have been acquired by MSL to date. The JSC SAM laboratory testbed consists of a thermal analyzer coupled with a MS configured to operate under total pressure (30 mbar), heating rate (35 C/min), and purge gas composition (He) analogous to the flight SAM. The CheMin and ChemCam laboratory testbeds were developed and built by inXitu, Inc. and Los Alamos National Laboratory, respectively, to acquire datasets relevant to the MSL CheMin and ChemCam flight instruments

    Quasicrystal formation in binary soft matter mixtures

    Get PDF
    Using a strategy that may be applied in theory or in experiments, we identify the regime in which a model binary soft matter mixture forms quasicrystals. The system is described using classical density functional theory combined with integral equation theory. Quasicrystal formation requires particle ordering with two characteristic length scales in certain particular ratios. How the length scales are related to the form of the pair interactions is reasonably well understood for one-component systems, but less is known for mixtures. In our model mixture of big and small colloids confined to an interface, the two length scales stem from the range of the interactions between pairs of big particles and from the cross big-small interactions, respectively. The small-small length scale is not significant. Our strategy for finding quasicrystals involves tuning locations of maxima in the dispersion relation, or equivalently in the liquid state partial static structure factors

    JSC-Rocknest: a Large-Scale Mojave Mars Simulant (MMS) Based Soil Simulant for In-Situ Resource Utilization Water-Extraction Studies

    Get PDF
    The Johnson Space Center Rocknest (JSC-RN) simulant was developed in response to a need by NASA's Advanced Exploration Systems (AES) In Situ Resource Utilization (ISRU) project for a simulant to be used in component and system testing for water extraction from Mars regolith. JSC-RN was de-signed to be chemically and mineralogically similar to material from the aeolian sand shadow named Rocknest in Gale Crater, particularly the 1-3 weight percentage water release as measured by the Sample Analysis at Mars (SAM) instrument. Rocknest material is a proxy for average martian soils, which are unconsolidated and could be easily scooped by rovers or landers in order to extract water. One way in which water can be extracted from aeolian material is through heating, where adsorbed and structural water is thermally removed from minerals. The water can then be condensed and used as drinking water or split and used as propellant for spacecraft or as a source of breathable O2. As such, it was essential that JSC-RN contained evolved gas profiles, especially low temperature water (less than 400 degrees Centigrade), that mimicked what is observed in martian soils. Because many of these ISRU tests require hundreds of kilograms of Mars soil simulant, it was essential that JSC-RN be cost-effective and based on com-ponents that could be purchased commercially (i.e., not synthesized in the lab). Here, we describe the JSC-RN martian soil simulant, which is ideal for large-scale production and use in ISRU water extraction studies
    corecore