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Quasicrystal formation in binary soft matter mixtures
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Using a strategy that may be applied in theory or in experiments, we identify the regime in which a model
binary soft matter mixture forms quasicrystals. The system is described using classical density functional theory
combined with integral equation theory. Quasicrystal formation requires particle ordering with two characteristic
length scales in certain particular ratios. How the length scales are related to the form of the pair interactions is
reasonably well understood for one-component systems, but less is known for mixtures. In our model mixture
of big and small colloids confined to an interface, the two length scales stem from the range of the interactions
between pairs of big particles and from the cross big-small interactions, respectively. The small-small length
scale is not significant. Our strategy for finding quasicrystals involves tuning locations of maxima in the
dispersion relation, or equivalently in the liquid state partial static structure factors.
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For systems of soft particles of a single type, there is
growing understanding of the ingredients required for the
self-assembly of quasicrystals (QCs). The necessary features
are rather special, which explains why QCs are rare in na-
ture. These are best seen by considering the particle pair
interaction potentials and pair correlation functions in Fourier
space, where one observes that there are two characteristic
peaks at wave numbers k1 and k2, with the ratio k1/k2 taking
certain special values which are geometric in origin [1–11];
e.g., for two-dimensional (2D) dodecagonal QCs, k1/k2 =
2 cos(π/12) ≈ 1.93. These features also manifest in the dis-
persion relation ω(k), which characterizes the growth or decay
of density modulations with wave number k in the liquid state.

For one-component systems in the liquid state with number
density ρ0 we may express a perturbation in the density profile
δρ(r, t ) ≡ ρ(r, t ) − ρ0 as a Fourier sum of modes with wave
vector k of form ∼ exp(ik · r + ωt ). The equation for the
time evolution of the density ρ can be written ∂tδρ = Lδρ +
O(δρ2), where ∂t is a partial time derivative and L is a spatial
operator [12–14]. Linearizing, we see that ω is the eigenvalue
of L acting on the eigenfunction exp(ik · r), so if ω < 0 for all
k = |k|, then all modes decay and the uniform state is linearly
stable. However, if ω > 0 for some k, then those modes grow
over time. How ω(k) is related to the form of the soft pair
potentials is well established [12–16].
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To obtain QCs, the dispersion relation should exhibit max-
ima at k1 and k2, with roughly equal peak values that are
as close to zero as possible. This is equivalent to requir-
ing that the static structure factor S(k) [17] should exhibit
two prominent peaks at k1 and k2, since for a bulk fluid
ω(k) ∝ −k2/S(k) [6,8,9,16,18]. Additionally, ω(k) must be
sufficiently negative at the reciprocal lattice vectors of k1 and
k2 that are involved in stabilizing competing periodic crystal
structures (e.g., with wave numbers

√
3k1,

√
3k2, etc.), so that

these are suppressed [11].
In addition to characterizing how a uniform bulk liquid

evolves after being perturbed, the dispersion relation is im-
portant because it gives a crucial understanding of which
wave-number density modulations are favorable and which
are likely to be present in any incipient nonuniform crystalline
or QC states [11]. In systems that are near to or beyond
freezing, the characteristic modes that form the crystal or QC
either grow or decay slowly. In one-component QC forming
systems, this occurs in the vicinity of the point in the phase
diagram where the system is marginally unstable at both k1

and k2 [1–11].
On the face of it, QCs should occur more widely in two-

component systems, since these intrinsically have at least two
length scales, originating from the different particle sizes.
Indeed, the vast majority of QCs discovered so far are metallic
alloys with at least two components, e.g., Al-Mn or Ni-
Cr [19,20]. For mixtures where the particles have a well-
defined (hard) core, requiring certain geometrical motifs as
minimal energy structures in local particle arrangements can
be a fruitful way to find QCs [21–24]. However, there is not an
established “recipe” for finding them, at least in soft matter.
The three-step strategy we follow and advocate here, which
works for the colloidal mixture model considered below and
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which we expect to be more generally applicable, is as fol-
lows: (i) Obtain the liquid state partial static structure factors.
(ii) Select the parameters or state point such that they exhibit
two peaks at wave numbers k1 and k2 with the specific ratio
corresponding to the desired QC, while also checking that
there is no peak at k = 0, as this is a signature of demixing,
which can overtake the desired QC formation. (iii) Tune the
parameters or state point so that the maxima in ω(k) are
similar in height and as close to zero as possible. We success-
fully apply this strategy for finding QCs in a binary mixture
modeled using a simple classical density functional theory
(DFT) with direct correlation functions obtained from the
hypernetted chain (HNC) Ornstein-Zernike integral equation
theory [17]. This is only qualitatively correct for the system to
which it is applied (see below), but the simplicity makes it an
ideal test system on which to develop our approach.

Our strategy has similarities to the approach used previ-
ously to find QCs in one-component systems, but for binary
mixtures there are several additional complexities to over-
come. Mixtures of big (b) and small (s) particles generically
have at least three (not two) length scales present. These are
the characteristic ranges of the b-b and s-s interactions and
also the b-s cross interaction. In the beautiful work [25],
results for several model binary mixtures of soft particles
are presented, treated using a phase-field crystal-type the-
ory [26]. This predicts the mixtures to form a variety of QCs,
with the b-b and s-s interaction potentials providing the two
length scales needed for the QC formation. However, treating
these mixtures with a more accurate DFT, which retains the
logarithmic ideal gas free energy instead of approximating
via a Taylor expansion [26,27], we find that these systems
actually just phase separate and do not form QCs (results
not displayed). In the mixture considered here, the two length
scales required for QC formation originate in the b-b and b-s
interaction length scales. The s-s length scale seems to be
irrelevant.

To determine the growth or decay rate of density perturba-
tions in a uniform binary fluid mixture (i.e., the dispersion
relation), where the bulk densities of the two species are
ρ0,b and ρ0,s, one must consider the time evolution of δρ =
(δρb, δρs) = (ρb − ρ0,b, ρs − ρ0,s). Fourier transforming the
coupled dynamical equations for the two density profiles we
obtain ∂t ρ̂(k, t ) = Lρ̂(k, t ) + O(ρ̂2), where ρ̂ is the Fourier
transform of δρ and L is a 2 × 2 matrix [13]. In the Appendix
we give an explicit expression for L, which depends on ĉi j (k),
the Fourier transforms of the fluid pair direct correlation
functions ci j (r), where i, j = b, s, for the case when the
particles have Brownian equations of motion, i.e., where we
can use dynamical DFT to describe the dynamics [16,28–31].
For binary mixtures, the dispersion relation has two distinct
branches, ω+(k) and ω−(k). The three partial structure factors
Si j (k) are closely linked to ĉi j (k) [17] (see the Appendix)
and therefore ω+ and ω− depend crucially on the form of
Si j (k). In Fig. 1 we display examples of Si j (k) and also ω+(k)
and ω−(k) for the model defined below. Note that the peak
locations in Si j (k) are where the peaks in ω+ occur, i.e.,
these are the wave numbers of the slowest decaying density
modes [or growing, if ω+(k) > 0]. The lower panel of Fig. 1
shows how ω+ and ω− vary as the inverse-temperature-like
parameter J (defined below) is varied. We compare these with
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FIG. 1. Top: The three partial structure factors Si j (k) + ai j ,
where ai j is a constant shift, for clarity. The solid line is Sbb(k) + 0,
the long-dashed line is Sbs(k) − 1, and the short-dashed line is
Sss(k) − 1. The densities are ρ0,bl2 = 1 and ρ0,sl2 = 2 and the pair
potential parameters are � = 42, ms = 0.025, and J = 1. The verti-
cal lines correspond to the two characteristic length scales required
for dodecagonal QCs. Bottom: The two branches of the dispersion
relation, ω+(k) and ω−(k), for J = 1, 1.25, and 1.5. The diffusion
coefficients Db = Ds = D (see the Appendix). The solid orange line
is the ideal gas result.

the ideal gas case, where ω(k) ∝ −k2, which highlights how
the particle interactions are responsible for the shape of ω+
and ω−. Since ω+ � ω−, the most important branch is ω+.

The system we consider is a 2D binary mixture of charged
colloids adsorbed on a flat oil-water interface [32–35].
The interactions between particles can be modeled by the
pair potentials

βφi j (r) = �mimj
l3

r3
, (1)

where r is the distance between particles and β = 1/kBT ,
where kB is Boltzmann’s constant and T is the temperature.
l = 1/

√
ρ0,b is the typical distance between b particles, �

is the dimensionless interaction strength between b particles,
and mi is the dipole moment ratio of species i = s, b relative
to that of species b (i.e., mb = 1 and ms < 1). This system
exhibits a rich variety of 2D crystal structures [33–39].

We describe the system using DFT with the Ramakrishnan-
Yussouff (RY) approximation [40]. The RY DFT was used
in Ref. [35] to obtain density profiles for system (1) at state
points where periodic crystals occur, with the ci j (r) that are
inputs to the DFT obtained from an accurate but computation-
ally intensive theory. Here instead the ci j (r) are obtained from
HNC theory [17], which is less accurate but simpler and so
much faster [35]. The RY DFT and HNC theory are described
in the Appendix. The speed of this is important because tuning
the pair potential parameters following the three steps of the
recipe above for finding QCs requires numerous calculations.
So, although the theory we use is at best qualitatively accu-
rate [35], it is used because of its speed and the fact that our
aim is to test the efficacy of the strategy for finding QCs, not
the accuracy of the theory. If more accuracy were required,
one could use the DFT in Refs. [41,42].

Density profiles for a QC state are displayed in Fig. 2, with
parameters ρ0,bl2 = 1, ρ0,sl2 = 2, � = 42, and ms = 0.025,

032043-2



QUASICRYSTAL FORMATION IN BINARY SOFT MATTER … PHYSICAL REVIEW RESEARCH 2, 032043(R) (2020)

FIG. 2. The logarithm of the two densities and the total density: In (a) we display ln(ρbl2), in (b) ln(ρsl2), and in (c) ln(ρbl2 + ρsl2). In
(d) is the Fourier transform of the b-particle density. The highest peaks in (a) and (c) correspond to the positions of the b particles, while the s
particles in (b) are much more delocalized and almost fluidlike. The state point is the same as in Fig. 1, with J = 1. In (d), the inner circle has
radius k1 and the outer has radius k2 = 1.93k1.

identified by following the three-step strategy given above.
The partial structure factors and dispersion relations displayed
in Fig. 1 also correspond to this system. The branch ω+(k)
has a peak at k = k1 with ω+(k1) approaching zero from
below, but the second peak at k2 > k1 is not as high. The pair
potential parameters were tuned so that k1/k2 ≈ 1.93, in order
to observe dodecagonal QCs. The aim was of course to have
both peaks at the same height and as close to zero as possible,
but the physical constraints stemming from the form of the
potentials in Eq. (1) prevents this. In particular, φbs(r) cannot
be varied independently of φbb(r) and φss(r). Of course, the
HNC theory also fails before ω+(k) → 0−.

To obtain the QC density profiles after calculating the pair
direct correlation functions, in the DFT we initially replace
ci j (r) → Jci j (r), where J is a constant scaling parameter.
Recall that ci j (r) ∼ −βφi j (r) for large r [17], so increasing J
is much like decreasing the temperature. This makes freezing
easier and the uniform density state to be linearly unstable, so
using an initial guess for the two density profiles consisting
of the desired average density value plus a small amplitude
random field is sufficient to observe the QC formation (or pe-
riodic crystals, at other state points). See Ref. [35] for further
details on this approach involving J for calculating solid state
density profiles. To obtain the results in Fig. 2, we initially
calculate for J = 1.5 and then take the resulting profiles as
our initial guess at the physical value J = 1. The density
profile for the b particles exhibits sharp peaks, with the QC
structure clearly visible. The Fourier transform in Fig. 2(d)
shows the characteristic 12-fold symmetry. In contrast, the s
particles are much more delocalized and fluidlike, acting as a
“stabilizer” for the structure. For these particles, the density
peaks represent preferred locations where particles might be
found some of the time, as there are more such locations than
particles. Similar behavior was observed at other state points,
where periodic crystals are the equilibria [35].

The ci j (r) obtained from the HNC theory are displayed in
Fig. 3. Inspecting these, one can roughly identify a typical
length scale (effective diameter) as the range r beyond which
ci j (r)/ci j (0) becomes small. The effective diameter obtained
from cbb(r) is ≈l and from cbs(r) is ≈0.5l . The ratio of these
is ≈2, but one needs to go to Fourier space (Fig. 1) to see
much more precisely the ratio k1/k2 ≈ 1.93, characteristic
of QC formation. Note too that the effective diameter from
css(r) is ≈0.25l . This corresponds to a wave vector ksl ≈
2π/0.25 ≈ 25. Figure 1 shows that neither ω(k) nor Si j (k)

have significant features near ks, indicating that this length
scale is irrelevant to the QC formation.

A deeper understanding of the observed QC formation
can be obtained by considering the phase diagram in the
concentration χ ≡ ρ0,b/(ρ0,b + ρ0,s) vs J plane, calculated
using only the (scaled with J) pair direct correlation functions
displayed in Fig. 3 from the state point (χ, J ) = (1/3, 1) as
input to the RY DFT. The result is displayed in Fig. 4. We
should emphasize that because the phase diagram is calculated
by rescaling the ci j (r) from the state point (χ, J ) = (1/3, 1)
to all other state points, in a strict sense, this is the only phys-
ically relevant state point in Fig. 4. However, by exploring
this theoretical model phase diagram, we obtain important
insight into the observed QC formation that we would not
obtain otherwise. At small J the uniform density liquid state
is found; recall that decreasing J is akin to increasing T . At
higher J the system freezes to form one of three different
solid phases. For small χ , i.e., where the s particles dominate,
the system forms a hexagonal crystal with lattice spacing
≈2π/ks, which we refer to as s-Hex; see Fig. 4. A portion
of a typical example is displayed in Fig. 5(a). The defects
originate from the random initial conditions. Increasing χ ,
the system forms a hexagonal crystal with a much larger
lattice spacing ≈2π/k1, determined by the range of cbb(r)
(b-Hex in Fig. 4). These crystal structures are discussed in
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FIG. 3. Pair direct correlation functions cbb(r) (red solid line),
cbs(r) (short-dashed green line), and css(r) (dashed blue line) ob-
tained from HNC theory, for the same state point as the results in
Figs. 1 and 2. The inset displays a magnification for small r. These
are inputs for our DFT calculations.
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FIG. 4. Phase diagram in the J vs concentration χ plane. Four
phases are observed: liquid (circles), small lattice spacing crystal (s-
Hex, pentagons), large lattice spacing crystal (b-Hex, squares), and
QCs (stars). The boundaries between each are guides to the eye. The
liquid state is unstable above the solid line stability threshold, where
ω(k) has a maximum for k �= 0 with ω(k) = 0. The dotted, dashed,
and dotted-dashed lines are prolongations, along which ω(k) = 0 at
one maximum, while already being positive at another.

detail in Ref. [33]. See also the DFT results in Ref. [35].
In these, the s-particles can either be fluidlike, leading to a
honeycomblike density distribution surrounding the peaks of
the b particles—see Fig. 5(c). Alternatively, they can be more
localized, so that the b-particle density peaks are surrounded
by density peaks from the s particles—see Fig. 5(b). Moving
to even higher χ , we find QCs. An example is displayed in
Fig. 2. Note that in this model [obtained by rescaling the
ci j (r) from the state point (χ, J ) = (1/3, 1)] the QCs extends
right up to χ = 1 (where ρ0,s = 0). We believe this is because
the influence of the s particles is still present in the rescaled
cbb(r) that is calculated at (χ, J ) = (1/3, 1), although it could
also be because −cbb(r) is somewhat akin to the soft effective
pair potential of the monodisperse system in Ref. [43], which
forms QCs.

This simplified model enables us to easily calculate the lin-
ear stability threshold for the uniform liquid, i.e., the locus in
the phase diagram where either ω+(k1) = 0 or ω+(k2) = 0, or
ω+(ks) = 0. These are the lines in Fig. 4. Those satisfying the
first two of these conditions meet at (χ, J ) = (0.85, 2.715),

FIG. 5. Logarithm of the total density for the periodic phases in
the phase diagram, Fig. 4. (a) s-Hex at (χ, J ) = (0.01, 1). (b) b-
Hex at (χ, J ) = (0.1, 1.5), with localized s particles. (c) b-Hex at
(χ, J ) = (0.2, 1.2), with s particles free to move on a honeycomblike
structure around the frozen b particles.

where the system is marginally unstable at both k1 and k2

(right-hand cusp on the solid line in Fig. 4). Recall that
for monodisperse systems points of this type are intimately
connected with QC formation [1–11]. Thus, finding this point
explains much of why we observe QCs in the present binary
mixture. Importantly, notice that this point exists in the theo-
retically constructed (χ, J ) plane, rather than in the physical
parameter space of the original system. So, although in the
physical parameter space the two peaks at k1 and k2 in ω(k)
are not at the same height and nor is the second peak in Si j (k)
at k2 as prominent as the first at k1, nonetheless there is still
the influence of the interaction between density modes with
wave number k1 and k2 to stabilize the QC state. Much insight
on such two-mode interactions is in the pattern formation
literature related to Faraday waves [1,10,44–57] and though
binary mixtures have the added complication of consisting of
two coupled fields, much of this insight still applies.

In Fig. 4 the boundaries between regions of the different
phases are only guides for the eye. For J = 2 we have deter-
mined the states at coexistence between the b-Hex and QC
phases and found the width of the coexistence region to be
�χ ≈ 0.04 (not displayed). Since this is small, it justifies
our approximate approach for identifying the locations of
the phase boundaries (we comment further on this in the
Appendix).

To summarize, we have proposed a “recipe” for finding
QCs in soft matter mixtures. The key quantities for inspec-
tion are the partial static structure factors and the dispersion
relation. In the model system studied here the two length
scales required for QC formation arise from the b-b and b-s
particle interactions. In principle, these could instead arise
from the b-b and s-s interactions, but from our studies of
soft-particle models (not shown), phase separation occurs
much more readily than QC formation in this case. Using the
cross-interaction b-s length scale as one of the key QC length
scales helps to avoid this.
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APPENDIX

1. The Ornstein-Zernike equation and liquid state structure

The Ornstein-Zernike (OZ) equations for the total correla-
tion functions hi j (r) of a binary fluid mixture are

hi j (r) = ci j (r) +
∑
p=b,s

ρ0,p

∫
dr′cip(|r − r′|)hpj (r′), (A1)

where ci j (r) are the pair direct correlation functions and ρ0,i

for i = b, s are the bulk fluid densities of the two species [17].
The radial distribution functions are related to the total
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correlation functions via gi j (r) = 1 + hi j (r). These coupled
equations must be solved in conjunction with the following
(exact) closure relations,

ci j (r) = −βφi j (r) + hi j (r) − ln[1 + hi j (r)] + Bi j (r), (A2)

where Bi j (r) are the so-called bridge functions, φi j (r) are the
pair potentials, and β = 1/kBT [17]. The hypernetted chain
(HNC) approximation consists of setting Bi j (r) = 0 for all r.
Due to the convolutions in (A1), on Fourier transforming we
obtain the following set of algebraic equations,

ĥi j (k) = ĉi j (k) +
∑
p=b,s

ρ0,pĉip(k)ĥp j (k), (A3)

where ĥi j (k) and ĉi j (k) are the Fourier transforms of hi j (r)
and ci j (r), respectively. The partial static structure factors are
related to these as follows [13,17],

Sbb(k) = 1 + ρ0,bĥbb(k),

Sss(k) = 1 + ρ0,sĥss(k), (A4)

Sbs(k) = √
ρ0,bρ0,sĥbs(k).

From (A3) we obtain

ĥi j (k) = Ni j (k)

D(k)
, (A5)

with the numerators given by

Nbb(k) = ĉbb(k) + ρ0,s
[
ĉ2

bs(k) − ĉbb(k)ĉss(k)
]
,

Nss(k) = ĉss(k) + ρ0,b
[
ĉ2

bs(k) − ĉbb(k)ĉss(k)
]
,

Nbs(k) = ĉbs(k),

(A6)

and the common denominator

D(k) ≡ [1 − ρ0,bĉbb(k)][1 − ρ0,sĉss(k)] − ρ0,bρ0,sĉ
2
bs(k).

(A7)
For the stable liquid, D(k) > 0 for all k. However, if this is
not the case, then the liquid state is unstable. Thus, we can
determine the stability threshold for the uniform liquid from
solving for the locus in the phase diagram where a solution to
the equation D(k) = 0 appears.

2. Density functional theory for binary mixtures

The density profiles ρi(r) are obtained using classical
density functional theory (DFT). The grand potential of the
system is [15,17]

�[ρb, ρs] = F[ρb, ρs] +
∑
i=b,s

∫
dr

[
V ext

i (r) − μi
]
ρi(r),

(A8)
where F is the intrinsic Helmholtz free-energy functional,
V ext

i (r) is the one-body external potential acting on species i
[here we set V ext

i (r) ≡ 0 for i = b, s, in order to study bulk
phases], and μi are the chemical potentials. The intrinsic
Helmholtz free energy can be split into two terms,

F[ρb, ρs] = F id[ρb, ρs] + F ex[ρb, ρs], (A9)

where the first term is the ideal gas contribution,

F id[ρb, ρs] = kBT
∑
i=b,s

∫
drρi(r)

{
ln

[

d

i ρi(r)
] − 1

}
,

(A10)
where 
i is the (irrelevant) thermal de Broglie wavelength
and d is the dimensionality of the system. The second term
in Eq. (A9) is the excess Helmholtz free energy, arising from
the interactions between the particles. Following Ramakrish-
nan and Yussouff [40], the approximation we use here is to
expand this functional around the homogeneous fluid state in
a functional Taylor expansion and truncate at second order,
giving

F ex[ρb, ρs] = F ex[ρ0,b, ρ0,s] +
∑
i=b,s

∫
drμex

i δρi(r)

− 1

2β

∑
i = b, s
j = b, s

∫
drδρi(r)ci j (|r − r′|)δρ j (r′),

(A11)

where δρi(r) = ρi(r) − ρ0,i and μex
i = μi − kBT ln (ρ0,i


d
i )

are the excess chemical potentials. We further approximate
the pair direct correlation functions ci j (r) via those obtained
from the HNC theory. The equilibrium density profiles are
those which minimize the grand potential � and which there-
fore satisfy the following pair of coupled Euler-Lagrange
equations,

δ�[ρb, ρs]

δρi
= 0, (A12)

for i = b, s.

3. Dynamics: The growth or decay of small amplitude
density perturbations

When the equations of motion of the particles can be
approximated by stochastic Brownian equations of motion,
then dynamical density functional theory (DDFT) shows that
the nonequilibrium density distributions for the two species of
particles ρi(r, t ) is described by [16,28–30]

∂ρi

∂t
= ∇ ·

(
γiρi∇ δ�[ρs, ρb]

δρi

)
, (A13)

where the mobility coefficient γi = βDi and where Di is the
diffusion coefficient of species i. Note that if instead the
particles evolve according to Newton’s equations of motion,
then the equations for the time evolution of the density profiles
are more complicated, but in dense systems one can argue that
Eq. (A13) still governs the long-time (on diffusive timescales)
behavior [31]. If we consider the growth or decay of small-
amplitude density perturbations around the bulk value of the
form δρi(r, t ) = ρi(r, t ) − ρ0,i, then we can expand Eq. (A13)
to obtain [12–16]

∂δρi(r, t )

∂t
= Di∇2δρi(r, t ) − Diρ0,i

∑
j=b,s

∇2

×
∫

dr′δρ j (r′, t )ci j (|r − r′|) + O
(
δρ2

i

)
.

(A14)
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Linearizing this equation and then Fourier transforming, we
obtain

∂ρ̂i(k, t )

∂t
= −k2Diρ̂i(k, t ) + k2Diρ0,i

∑
j=b,s

ρ̂ j (k, t )ci j (k),

(A15)
where ρ̂i(k, t ) is the Fourier transform of δρi(r, t ) and
k = |k|. Assuming ρ̂i(k, t ) ∝ exp[ω(k)t], then Eq. (A15)
becomes [13]

1ω(k)ρ̂ = Lρ̂, (A16)

where ρ̂ = (ρ̂b, ρ̂s) and the matrix L = ME, where the two
matrices M and E are defined as

M = −k2

(
Dbρ0,b 0

0 Dsρ0,s

)
(A17)

and

E =
([

1
ρ0,b

− ĉbb(k)
] −ĉbs(k)

−ĉsb(k)
[

1
ρ0,s

− ĉss(k)
]
)

. (A18)

Solving Eq. (A16) for the dispersion relation ω(k), one ob-
tains two branches of solutions, ω±(k). These are given by

ω±(k) = 1
2 Tr(ME) ±

√
1
4 Tr(ME)2 − det(ME). (A19)

Further details of this derivation can be found in Ref. [13].
Note that the equation det(E) = 0 is entirely equivalent to
solving D(k) = 0, from Eq. (A7).

It is worth recalling that the values of the diffusion coef-
ficients Db and Ds do not ever determine which structure is
the thermodynamic equilibrium state, i.e., the minimum of
the free energy. Therefore, the values of Db and Ds are not
involved in determining the phase diagram in Fig. 4 of the
main text. Nor do the values of Db and Ds determine the
locations of the linear stability threshold lines in the phase
diagram, i.e., the lines in Fig. 4 where either ω+(k1) = 0 or
ω+(k2) = 0 or ω+(ks) = 0. This is because these lines come
from solving the equation det(E) = 0, while the values of
the diffusion coefficients only enter the mobility matrix M
in Eq. (A17). That said, the precise value of the ratio Db/Ds

does influence the dispersion relation curves, but does not
affect where the peaks occur (i.e., does not change k1 or k2).
Thus, the value of the ratio Db/Ds is only relevant to the

nonequilibrium dynamics of the system. However, since here
we are solely ultimately interested in the equilibrium phase
behavior of the system, which does not depend on Db/Ds, we
therefore set this ratio equal to 1, i.e., we set Db = Ds = D.

4. Note on the width of the coexistence region between
the QC and the b-Hex phase

In the main text we comment briefly on the fact that in the
phase diagram in Fig. 4 the coexistence region between the
QC and the b-Hex phase is fairly small. It is worth expanding
on those comments here. That the coexistence region is nar-
row is important, because it implies that in large portions of
the phase diagram (as displayed in Fig. 4), the QC is the ther-
modynamic equilibrium. In the main text we give the width of
the coexistence region �χ ≈ 0.04 for J = 2. For lower values
of J the coexistence region becomes a little broader (e.g., at
J = 1.5 the width of the coexistence region �χ ≈ 0.06) and
for higher J it is narrower. Other model systems where the
coexistence gap between the QC and hexagonal phases is very
narrow include the systems described in Refs. [6,11], so based
on our experience with those systems, the narrowness in the
present system is perhaps not too surprising.

Another observation on this issue worth noting is the
following: If one initiates the system in the QC state and
then decreases χ in small steps, following the QC branch
of solutions, one eventually falls off that branch onto the
b-Hex phase branch of solutions. For example, for J = 1.5
this occurs at χ ≈ 0.3. Some authors would refer to this as the
“spinodal” point for the QC phase. In other words, for J = 1.5
and χ < 0.3 the QC state is no longer a stable solution to
the model equations. In a similar way, if one initiates the
system in the b-Hex state and then increases χ in small steps,
following the b-Hex branch of solutions, one eventually falls
off that branch onto a state that is a periodic approximant for
the QC state. For J = 1.5 this b-Hex spinodal point occurs at
χ ≈ 0.37. In other words, for J = 1.5 and χ > 0.37 the b-Hex
state is no longer a stable solution to the model equations.
This fact that the system falls from the b-Hex branch of
solutions onto a branch related to the QC state is a very strong
indicator that the QC is the thermodynamic equilibrium state.
Moreover, the distance in the phase diagram between these
two spinodal points, 0.37 − 0.30 = 0.07, is an upper bound
for the coexistence region width �χ .
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