80 research outputs found

    Elementary Canonical Formulae: A Survey on Syntactic, Algorithmic, and Modeltheoretic Aspects

    Get PDF
    In terms of validity in Kripke frames, a modal formula expresses a universal monadic second-order condition. Those modal formulae which are equivalent to first-order conditions are called elementary. Modal formulae which have a certain persistence property which implies their validity in all canonical frames of modal logics axiomatized with them, and therefore their completeness, are called canonical. This is a survey of a recent and ongoing study of the class of elementary and canonical modal formulae. We summarize main ideas and results, and outline further research perspectives

    Algorithmic correspondence and completeness in modal logic. I. The core algorithm SQEMA

    Full text link
    Modal formulae express monadic second-order properties on Kripke frames, but in many important cases these have first-order equivalents. Computing such equivalents is important for both logical and computational reasons. On the other hand, canonicity of modal formulae is important, too, because it implies frame-completeness of logics axiomatized with canonical formulae. Computing a first-order equivalent of a modal formula amounts to elimination of second-order quantifiers. Two algorithms have been developed for second-order quantifier elimination: SCAN, based on constraint resolution, and DLS, based on a logical equivalence established by Ackermann. In this paper we introduce a new algorithm, SQEMA, for computing first-order equivalents (using a modal version of Ackermann's lemma) and, moreover, for proving canonicity of modal formulae. Unlike SCAN and DLS, it works directly on modal formulae, thus avoiding Skolemization and the subsequent problem of unskolemization. We present the core algorithm and illustrate it with some examples. We then prove its correctness and the canonicity of all formulae on which the algorithm succeeds. We show that it succeeds not only on all Sahlqvist formulae, but also on the larger class of inductive formulae, introduced in our earlier papers. Thus, we develop a purely algorithmic approach to proving canonical completeness in modal logic and, in particular, establish one of the most general completeness results in modal logic so far.Comment: 26 pages, no figures, to appear in the Logical Methods in Computer Scienc

    Representation of Nelson Algebras by Rough Sets Determined by Quasiorders

    Full text link
    In this paper, we show that every quasiorder RR induces a Nelson algebra RS\mathbb{RS} such that the underlying rough set lattice RSRS is algebraic. We note that RS\mathbb{RS} is a three-valued {\L}ukasiewicz algebra if and only if RR is an equivalence. Our main result says that if A\mathbb{A} is a Nelson algebra defined on an algebraic lattice, then there exists a set UU and a quasiorder RR on UU such that A≅RS\mathbb{A} \cong \mathbb{RS}.Comment: 16 page

    Information completeness in Nelson algebras of rough sets induced by quasiorders

    Full text link
    In this paper, we give an algebraic completeness theorem for constructive logic with strong negation in terms of finite rough set-based Nelson algebras determined by quasiorders. We show how for a quasiorder RR, its rough set-based Nelson algebra can be obtained by applying the well-known construction by Sendlewski. We prove that if the set of all RR-closed elements, which may be viewed as the set of completely defined objects, is cofinal, then the rough set-based Nelson algebra determined by a quasiorder forms an effective lattice, that is, an algebraic model of the logic E0E_0, which is characterised by a modal operator grasping the notion of "to be classically valid". We present a necessary and sufficient condition under which a Nelson algebra is isomorphic to a rough set-based effective lattice determined by a quasiorder.Comment: 15 page

    A map of dependencies among three-valued logics

    Get PDF
    International audienceThree-valued logics arise in several fields of computer science, both inspired by concrete problems (such as in the management of the null value in databases) and theoretical considerations. Several three-valued logics have been defined. They differ by their choice of basic connectives, hence also from a syntactic and proof-theoretic point of view. Different interpretations of the third truth value have also been suggested. They often carry an epistemic flavor. In this work, relationships between logical connectives on three-valued functions are explored. Existing theorems of functional completeness have laid bare some of these links, based on specific connectives. However we try to draw a map of such relationships between conjunctions, negations and implications that extend Boolean ones. It turns out that all reasonable connectives can be defined from a few of them and so all known three-valued logics appear as a fragment of only one logic. These results can be instrumental when choosing, for each application context, the appropriate fragment where the basic connectives make full sense, based on the appropriate meaning of the third truth-value

    A system of relational syllogistic incorporating full Boolean reasoning

    Full text link
    We present a system of relational syllogistic, based on classical propositional logic, having primitives of the following form: Some A are R-related to some B; Some A are R-related to all B; All A are R-related to some B; All A are R-related to all B. Such primitives formalize sentences from natural language like `All students read some textbooks'. Here A and B denote arbitrary sets (of objects), and R denotes an arbitrary binary relation between objects. The language of the logic contains only variables denoting sets, determining the class of set terms, and variables denoting binary relations between objects, determining the class of relational terms. Both classes of terms are closed under the standard Boolean operations. The set of relational terms is also closed under taking the converse of a relation. The results of the paper are the completeness theorem with respect to the intended semantics and the computational complexity of the satisfiability problem.Comment: Available at http://link.springer.com/article/10.1007/s10849-012-9165-

    Modal Logics of Topological Relations

    Full text link
    Logical formalisms for reasoning about relations between spatial regions play a fundamental role in geographical information systems, spatial and constraint databases, and spatial reasoning in AI. In analogy with Halpern and Shoham's modal logic of time intervals based on the Allen relations, we introduce a family of modal logics equipped with eight modal operators that are interpreted by the Egenhofer-Franzosa (or RCC8) relations between regions in topological spaces such as the real plane. We investigate the expressive power and computational complexity of logics obtained in this way. It turns out that our modal logics have the same expressive power as the two-variable fragment of first-order logic, but are exponentially less succinct. The complexity ranges from (undecidable and) recursively enumerable to highly undecidable, where the recursively enumerable logics are obtained by considering substructures of structures induced by topological spaces. As our undecidability results also capture logics based on the real line, they improve upon undecidability results for interval temporal logics by Halpern and Shoham. We also analyze modal logics based on the five RCC5 relations, with similar results regarding the expressive power, but weaker results regarding the complexity

    A modal theorem-preserving translation of a class of three-valued logics of incomplete information

    Get PDF
    International audienceThere are several three-valued logical systems that form a scattered landscape, even if all reasonable connectives in three-valued logics can be derived from a few of them. Most papers on this subject neglect the issue of the relevance of such logics in relation with the intended meaning of the third truth-value. Here, we focus on the case where the third truth-value means unknown, as suggested by Kleene. Under such an understanding, we show that any truth-qualified formula in a large range of three-valued logics can be translated into KD as a modal formula of depth 1, with modalities in front of literals only, while preserving all tautologies and inference rules of the original three-valued logic. This simple information logic is a two-tiered classical propositional logic with simple semantics in terms of epistemic states understood as subsets of classical interpretations. We study in particular the translations of Kleene, Gödel, ᮌukasiewicz and Nelson logics. We show that Priest’s logic of paradox, closely connected to Kleene’s, can also be translated into our modal setting, simply by exchanging the modalities possible and necessary. Our work enables the precise expressive power of three-valued logics to be laid bare for the purpose of uncertainty management
    • 

    corecore