25 research outputs found

    Photosynthetic reaction center as a quantum heat engine

    Get PDF
    Two seemingly unrelated effects attributed to quantum coherence have been reported recently in natural and artificial light-harvesting systems. First, an enhanced solar cell efficiency was predicted and second, population oscillations were measured in photosynthetic antennae excited by sequences of coherent ultrashort laser pulses. Because both systems operate as quantum heat engines (QHEs) that convert the solar photon energy to useful work (electric currents or chemical energy, respectively), the question arises whether coherence could also enhance the photosynthetic yield. Here, we show that both effects arise from the same population–coherence coupling term which is induced by noise, does not require coherent light, and will therefore work for incoherent excitation under natural conditions of solar excitation. Charge separation in light-harvesting complexes occurs in a pair of tightly coupled chlorophylls (the special pair) at the heart of photosynthetic reaction centers of both plants and bacteria. We show the analogy between the energy level schemes of the special pair and of the laser/photocell QHEs, and that both population oscillations and enhanced yield have a common origin and are expected to coexist for typical parameters. We predict an enhanced yield of 27% in a QHE motivated by the reaction center. This suggests nature-mimicking architectures for artificial solar energy devices

    Deterministic spatio-temporal control of nano-optical fields in optical antennas and nano transmission lines

    Full text link
    We show that pulse shaping techniques can be applied to tailor the ultrafast temporal response of the strongly confined and enhanced optical near fields in the feed gap of resonant optical antennas (ROAs). Using finite-difference time-domain (FDTD) simulations followed by Fourier transformation, we obtain the impulse response of a nano structure in the frequency domain, which allows obtaining its temporal response to any arbitrary pulse shape. We apply the method to achieve deterministic optimal temporal field compression in ROAs with reduced symmetry and in a two-wire transmission line connected to a symmetric dipole antenna. The method described here will be of importance for experiments involving coherent control of field propagation in nanophotonic structures and of light-induced processes in nanometer scale volumes.Comment: 5 pages, 5 figure

    Dual-tip-enhanced ultrafast CARS nanoscopy

    Get PDF
    Coherent anti-Stokes Raman scattering (CARS) and, in particular, femtosecond adaptive spectroscopic techniques (FAST CARS) have been successfully used for molecular spectroscopy and microscopic imaging. Recent progress in ultrafast nanooptics provides flexibility in generation and control of optical near fields, and holds promise to extend CARS techniques to the nanoscale. In this theoretical study, we demonstrate ultrafast subwavelentgh control of coherent Raman spectra of molecules in the vicinity of a plasmonic nanostructure excited by ultrashort laser pulses. The simulated nanostructure design provides localized excitation sources for CARS by focusing incident laser pulses into subwavelength hot spots via two self-similar nanolens antennas connected by a waveguide. Hot-spot-selective dual-tip-enhanced CARS (2TECARS) nanospectra of DNA nucleobases are obtained by simulating optimized pump, Stokes and probe near fields using tips, laser polarization- and pulse-shaping. This technique may be used to explore ultrafast energy and electron transfer dynamics in real space with nanometre resolution and to develop novel approaches to DNA sequencing.Comment: 11 pages, 6 figure

    Morphological fractal analysis of shape in cancer cells treated with combinations of microtubule-polymerizing and -depolymerizing agents

    No full text
    The current prognostic parameters, including tumor volume, biochemistry, or immunohistochemistry, are not sufficient to reflect the properties of cancer cells that distinguish them from normal cells. Our focus is to evaluate the effects of a combination of microtubule-polymerizing Taxol (R) and -depolymerizing colchicine on IAR20 PC1 liver cells by measuring the surface fractal dimension as a descriptor of two-dimensional vascular geometrical complexity. The fractal dimension offers a rapid means of assessing cell shape. Furthermore, we show correlations of fractal dimensions of cell contours with the latent factors from our previously employed cell shape analysis

    Double-quantum resonances and exciton-scattering in coherent 2D spectroscopy of photosynthetic complexes

    No full text
    A simulation study demonstrates how the nonlinear optical response of the Fenna–Matthews–Olson photosynthetic light-harvesting complex may be explored by a sequence of laser pulses specifically designed to probe the correlated dynamics of double excitations. Cross peaks in the 2D correlation plots of the spectra reveal projections of the double-exciton wavefunctions onto a basis of direct products of single excitons. An alternative physical interpretation of these signals in terms of quasiparticle scattering is developed
    corecore