811 research outputs found

    Iron Displacements and Magnetoelastic Coupling in the Spin-Ladder Compound BaFe2Se3

    Full text link
    We report long-range ordered antiferromagnetism concomitant with local iron displacements in the spin-ladder compound BaFe2_2Se3_3. Short-range magnetic correlations, present at room temperature, develop into long-range antiferromagnetic order below TN_N = 256 K, with no superconductivity down to 1.8 K. Built of ferromagnetic Fe4_4 plaquettes, the magnetic ground state correlates with local displacements of the Fe atoms. These iron displacements imply significant magnetoelastic coupling in FeX4_4-based materials, an ingredient hypothesized to be important in the emergence of superconductivity. This result also suggests that knowledge of these local displacements is essential for properly understanding the electronic structure of these systems. As with the copper oxide superconductors two decades ago, our results highlight the importance of reduced dimensionality spin ladder compounds in the study of the coupling of spin, charge, and atom positions in superconducting materials

    Density of Phonon States in Superconducting FeSe as a Function of Temperature and Pressure

    Full text link
    The temperature and pressure dependence of the partial density of phonon states of iron atoms in superconducting Fe1.01Se was studied by 57Fe nuclear inelastic scattering (NIS). The high energy resolution allows for a detailed observation of spectral properties. A sharpening of the optical phonon modes and shift of all spectral features towards higher energies by ~4% with decreasing temperature from 296 K to 10 K was found. However, no detectable change at the tetragonal - orthorhombic phase transition around 100 K was observed. Application of a pressure of 6.7 GPa, connected with an increase of the superconducting temperature from 8 K to 34 K, results in an increase of the optical phonon mode energies at 296 K by ~12%, and an even more pronounced increase for the lowest-lying transversal acoustic mode. Despite these strong pressure-induced modifications of the phonon-DOS we conclude that the pronounced increase of Tc in Fe1.01Se with pressure cannot be described in the framework of classical electron-phonon coupling. This result suggests the importance of spin fluctuations to the observed superconductivity

    The social determinants of health: Time to re-think?

    Get PDF
    Twelve years have now passed since the influential WHO Report on the Social Determinants of Health (SDoH) in 2008. A group of senior international public health scholars and decision-makers met in Italy in mid-2019 to review the legacy of the SDoH conceptual framework and its adequacy for the many challenges facing our field as we enter the 2020s. Four major categories of challenges were identified: emerging “exogenous” challenges to global health equity, challenges related to weak policy and practice implementation, more fundamental challenges related to SDoH theory and research, and broader issues around modern research in general. Each of these categories is discussed, and potential solutions offered. We conclude that although the SDoH framework is still a worthy core platform for public health research, policy, and practice, the time is ripe for significant evolution

    Cost-effectiveness of continuous glucose monitoring and intensive insulin therapy for type 1 diabetes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Our objective was to determine the cost-effectiveness of Continuous Glucose Monitoring (CGM) technology with intensive insulin therapy compared to self-monitoring of blood glucose (SMBG) in adults with type 1 diabetes in the United States.</p> <p>Methods</p> <p>A Markov cohort analysis was used to model the long-term disease progression of 12 different diabetes disease states, using a cycle length of 1 year with a 33-year time horizon. The analysis uses a societal perspective to model a population with a 20-year history of diabetes with mean age of 40. Costs are expressed in US2007,effectivenessinqualityadjustedlifeyears(QALYs).Parameterestimatesandtheirrangeswerederivedfromtheliterature.UtilityestimatesweredrawnfromtheEQ5Dcatalogue.ProbabilitieswerederivedfromtheDiabetesControlandComplicationsTrial(DCCT),theUnitedKingdomProspectiveDiabetesStudy(UKPDS),andtheWisconsinEpidemiologicStudyofDiabeticRetinopathy.CostsandQALYswerediscountedat3US 2007, effectiveness in quality-adjusted life years (QALYs). Parameter estimates and their ranges were derived from the literature. Utility estimates were drawn from the EQ-5D catalogue. Probabilities were derived from the Diabetes Control and Complications Trial (DCCT), the United Kingdom Prospective Diabetes Study (UKPDS), and the Wisconsin Epidemiologic Study of Diabetic Retinopathy. Costs and QALYs were discounted at 3% per year. Univariate and Multivariate probabilistic sensitivity analyses were conducted using 10,000 Monte Carlo simulations.</p> <p>Results</p> <p>Compared to SMBG, use of CGM with intensive insulin treatment resulted in an expected improvement in effectiveness of 0.52 QALYs, and an expected increase in cost of 23,552, resulting in an ICER of approximately 45,033/QALY.Forawillingnesstopay(WTP)of45,033/QALY. For a willingness-to-pay (WTP) of 100,000/QALY, CGM with intensive insulin therapy was cost-effective in 70% of the Monte Carlo simulations.</p> <p>Conclusions</p> <p>CGM with intensive insulin therapy appears to be cost-effective relative to SMBG and other societal health interventions.</p

    Disorder from order among anisotropic next-nearest-neighbor Ising spin chains in SrHo2_2O4_4

    Full text link
    We describe why Ising spin chains with competing interactions in SrHo2O4\rm SrHo_2O_4 segregate into ordered and disordered ensembles at low temperatures (TT). Using elastic neutron scattering, magnetization, and specific heat measurements, the two distinct spin chains are inferred to have N\'eel (\uparrow\downarrow\uparrow\downarrow) and double-N\'eel (\uparrow\uparrow\downarrow\downarrow) ground states respectively. Below TN=0.68(2)T_\mathrm{N}=0.68(2)~K, the N\'eel chains develop three dimensional (3D) long range order (LRO), which arrests further thermal equilibration of the double-N\'eel chains so they remain in a disordered incommensurate state for TT below TS=0.52(2)T_\mathrm{S}= 0.52(2)~K. SrHo2O4\rm SrHo_2O_4 distills an important feature of incommensurate low dimensional magnetism: kinetically trapped topological defects in a quasid-d-dimensional spin system can preclude order in d+1d+1 dimensions.Comment: 10 pages, 10 figure

    Extreme Sensitivity of Superconductivity to Stoichiometry in FeSe (Fe1+dSe)

    Full text link
    The recently discovered iron arsenide superconductors, which display superconducting transition temperatures as high as 55 K, appear to share a number of general features with high-Tc cuprates, including proximity to a magnetically ordered state and robustness of the superconductivity in the presence of disorder. Here we show that superconductivity in Fe1+dSe, the parent compound of the superconducting arsenide family, is destroyed by very small changes in stoichiometry. Further, we show that non-superconducting Fe1+dSe is not magnetically ordered down to low temperatures. These results suggest that robust superconductivity and immediate instability against an ordered magnetic state should not be considered as intrinsic characteristics of iron-based superconducting systems, and that Fe1+dSe may present a unique opportunity for determining which materials characteristics are critical to the existence of superconductivity in high Tc iron arsenide superconductors and which are not.Comment: Updated to reflect final version and include journal referenc

    Tuning the Charge Density Wave and Superconductivity in CuxTaS2

    Full text link
    We report the characterization of layered, 2H-type CuxTaS2, for x between 0 and 0.12. The charge density wave (CDW), at 70 K for TaS2, is destabilized with Cu doping. The sub-1K superconducting transition in undoped 2H-TaS2 jumps quickly to 2.5 K at low x, increases to 4.5 K at the optimal composition Cu0.04TaS2, and then decreases at higher x. The electronic contribution to the specific heat, first increasing and then decreasing as a function of Cu content, is 12 mJ mol-1 K-2 at Cu0.04TaS2. Electron diffraction studies show that the CDW remains present at the optimal superconducting composition, but with both a changed q vector and decreased coherence length. We present an electronic phase diagram for the system.Comment: 7 pages, 9 figures. To be published in Physical Review

    Investigation of the spin-glass regime between the antiferromagnetic and superconducting phases in Fe1+y_{1+y}Sex_xTe1x_{1-x}

    Full text link
    Using bulk magnetization along with elastic and inelastic neutron scattering techniques, we have investigated the phase diagram of Fe1+y_{1+y}Sex_{x}Te1x_{1-x} and the nature of magnetic correlations in three nonsuperconducting samples of Fe1.01_{1.01}Se0.1_{0.1}Te0.9_{0.9}, Fe1.01_{1.01}Se0.15_{0.15}Te0.85_{0.85} and Fe1.02_{1.02}Se0.3_{0.3}Te0.7_{0.7}. A cusp and hysteresis in the temperature dependence of the magnetization for the x=0.15x=0.15 and 0.3 samples indicates spin-glass (SG) ordering below Tsg=23T_{\rm sg} = 23K. Neutron scattering measurements indicate that the spin-glass behavior is associated with short-range spin density wave (SDW) ordering characterized by a static component and a low-energy dynamic component with a characteristic incommensurate wave vector of Qm=(0.46,0,0.50){\bf Q}_m = (0.46, 0, 0.50) and an anisotropy gap of \sim 2.5 meV. Our high Q{\bf Q}-resolution data also show that the systems undergo a glassy structural distortion that coincides with the short-range SDW order
    corecore