1,446 research outputs found

    Farmers’ preferences for cotton cultivation characteristics : a discrete choice experiment in Burkina Faso

    Get PDF
    While a fierce debate about the advantages and disadvantages of genetically modified crops is ongoing, it is surprising that farmers are often not consulted. In Burkina Faso, where insect resistant Bollgard II (R) cotton (further termed Bt cotton) was commercially released in 2008, studies highlight that cotton producers are in general satisfied with the reduction in insecticide use while the economic benefits are a source of controversy. To gain insight into farmers' preferences towards attributes in cotton cultivation, a discrete choice experiment (DCE) was developed. Five key attributes were identified to describe improved cotton varieties: seed development and provenance, seed costs, yield, required number of insecticide sprays, and preservation of agricultural practices. Farm-gate surveys were conducted among 324 cotton farmers in Western Burkina Faso. The results show that overall, farmers have a positive preference towards yield improvements and a negative preference towards pure private seed development and towards an increase in the requested number of insecticide applications or in the seed costs. According to their varieties at the time of the surveys (Bt and non-Bt), a difference was observed regarding their preferences for a status quo situation, indicating that those growing Bt had a stronger preference to keep the status quo than non-Bt farmers. When dividing the sample in segments based on the farm size, it was shown that there were different preferences with respect to the development of the variety and the required number of insecticide applications. Overall, it can be concluded from this study that economic benefits (linked to higher yields, lower seed costs, or reduced pesticide use) shape farmer's preferences

    Spectroscopy of 13B via the 13C(t,3He) reaction at 115 AMeV

    Full text link
    Gamow-Teller and dipole transitions to final states in 13B were studied via the 13C(t,3He) reaction at Et = 115 AMeV. Besides the strong Gamow-Teller transition to the 13B ground state, a weaker Gamow-Teller transition to a state at 3.6 MeV was found. This state was assigned a spin-parity of 3/2- by comparison with shell-model calculations using the WBP and WBT interactions which were modified to allow for mixing between nhw and (n+2)hw configurations. This assignment agrees with a recent result from a lifetime measurement of excited states in 13B. The shell-model calculations also explained the relatively large spectroscopic strength measured for a low-lying 1/2+ state at 4.83 MeV in 13B. The cross sections for dipole transitions up to Ex(13B)= 20 MeV excited via the 13C(t,3He) reaction were also compared with the shell-model calculations. The theoretical cross sections exceeded the data by a factor of about 1.8, which might indicate that the dipole excitations are "quenched". Uncertainties in the reaction calculations complicate that interpretation.Comment: 11 pages, 6 figure

    Development of an approximate method for quantum optical models and their pseudo-Hermicity

    Full text link
    An approximate method is suggested to obtain analytical expressions for the eigenvalues and eigenfunctions of the some quantum optical models. The method is based on the Lie-type transformation of the Hamiltonians. In a particular case it is demonstrated that E×ϵE\times \epsilon Jahn-Teller Hamiltonian can easily be solved within the framework of the suggested approximation. The method presented here is conceptually simple and can easily be extended to the other quantum optical models. We also show that for a purely imaginary coupling the E×ϵE\times \epsilon Hamiltonian becomes non-Hermitian but Pσ0P\sigma _{0}-symmetric. Possible generalization of this approach is outlined.Comment: Paper prepared fo the "3rd International Workshop on Pseudo-Hermitian Hamiltonians in Quantum Physics" June 2005 Istanbul. To be published in Czechoslovak Journal of Physic

    An improved geometric inequality via vanishing moments, with applications to singular Liouville equations

    Full text link
    We consider a class of singular Liouville equations on compact surfaces motivated by the study of Electroweak and Self-Dual Chern-Simons theories, the Gaussian curvature prescription with conical singularities and Onsager's description of turbulence. We analyse the problem of existence variationally, and show how the angular distribution of the conformal volume near the singularities may lead to improvements in the Moser-Trudinger inequality, and in turn to lower bounds on the Euler-Lagrange functional. We then discuss existence and non-existence results.Comment: some references adde

    Canonical description of ideal magnetohydrodynamic flows and integrals of motion

    Full text link
    In the framework of the variational principle the canonical variables describing ideal magnetohydrodynamic (MHD) flows of general type (i.e., with spatially varying entropy and nonzero values of all topological invariants) are introduced. The corresponding complete velocity representation enables us not only to describe the general type flows in terms of single-valued functions, but also to solve the intriguing problem of the ``missing'' MHD integrals of motion. The set of hitherto known MHD local invariants and integrals of motion appears to be incomplete: for the vanishing magnetic field it does not reduce to the set of the conventional hydrodynamic invariants. And if the MHD analogs of the vorticity and helicity were discussed earlier for the particular cases, the analog of Ertel invariant has been so far unknown. It is found that on the basis of the new invariants introduced a wide set of high-order invariants can be constructed. The new invariants are relevant both for the deeper insight into the problem of the topological structure of the MHD flows as a whole and for the examination of the stability problems. The additional advantage of the proposed approach is that it enables one to deal with discontinuous flows, including all types of possible breaks.Comment: 16 page

    Axon diameter distribution influences diffusion-derived axonal density estimation in the human spinal cord: in silico and in vivo evidence

    Get PDF

    Levy Anomalous Diffusion and Fractional Fokker--Planck Equation

    Full text link
    We demonstrate that the Fokker-Planck equation can be generalized into a 'Fractional Fokker-Planck' equation, i.e. an equation which includes fractional space differentiations, in order to encompass the wide class of anomalous diffusions due to a Levy stable stochastic forcing. A precise determination of this equation is obtained by substituting a Levy stable source to the classical gaussian one in the Langevin equation. This yields not only the anomalous diffusion coefficient, but a non trivial fractional operator which corresponds to the possible asymmetry of the Levy stable source. Both of them cannot be obtained by scaling arguments. The (mono-) scaling behaviors of the Fractional Fokker-Planck equation and of its solutions are analysed and a generalization of the Einstein relation for the anomalous diffusion coefficient is obtained. This generalization yields a straightforward physical interpretation of the parameters of Levy stable distributions. Furthermore, with the help of important examples, we show the applicability of the Fractional Fokker-Planck equation in physics.Comment: 22 pages; To Appear in Physica

    Measurement of Inclusive Spin Structure Functions of the Deuteron

    Full text link
    We report the results of a new measurement of spin structure functions of the deuteron in the region of moderate momentum transfer (Q2Q^2 = 0.27 -- 1.3 (GeV/c)2^2) and final hadronic state mass in the nucleon resonance region (WW = 1.08 -- 2.0 GeV). We scattered a 2.5 GeV polarized continuous electron beam at Jefferson Lab off a dynamically polarized cryogenic solid state target (15^{15}ND3_3) and detected the scattered electrons with the CEBAF Large Acceptance Spectrometer (CLAS). From our data, we extract the longitudinal double spin asymmetry AA_{||} and the spin structure function g1dg_1^d. Our data are generally in reasonable agreement with existing data from SLAC where they overlap, and they represent a substantial improvement in statistical precision. We compare our results with expectations for resonance asymmetries and extrapolated deep inelastic scaling results. Finally, we evaluate the first moment of the structure function g1dg_1^d and study its approach to both the deep inelastic limit at large Q2Q^2 and to the Gerasimov-Drell-Hearn sum rule at the real photon limit (Q20Q^2 \to 0). We find that the first moment varies rapidly in the Q2Q^2 range of our experiment and crosses zero at Q2Q^2 between 0.5 and 0.8 (GeV/c)2^2, indicating the importance of the Δ\Delta resonance at these momentum transfers.Comment: 13 pages, 8 figures, ReVTeX 4, final version as accepted by Phys. Rev.
    corecore