Abstract

In the framework of the variational principle the canonical variables describing ideal magnetohydrodynamic (MHD) flows of general type (i.e., with spatially varying entropy and nonzero values of all topological invariants) are introduced. The corresponding complete velocity representation enables us not only to describe the general type flows in terms of single-valued functions, but also to solve the intriguing problem of the ``missing'' MHD integrals of motion. The set of hitherto known MHD local invariants and integrals of motion appears to be incomplete: for the vanishing magnetic field it does not reduce to the set of the conventional hydrodynamic invariants. And if the MHD analogs of the vorticity and helicity were discussed earlier for the particular cases, the analog of Ertel invariant has been so far unknown. It is found that on the basis of the new invariants introduced a wide set of high-order invariants can be constructed. The new invariants are relevant both for the deeper insight into the problem of the topological structure of the MHD flows as a whole and for the examination of the stability problems. The additional advantage of the proposed approach is that it enables one to deal with discontinuous flows, including all types of possible breaks.Comment: 16 page

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 01/04/2019