143 research outputs found

    Provisioning Spot Market Cloud Resources to Create Cost-effective Virtual Clusters

    Full text link
    Infrastructure-as-a-Service providers are offering their unused resources in the form of variable-priced virtual machines (VMs), known as "spot instances", at prices significantly lower than their standard fixed-priced resources. To lease spot instances, users specify a maximum price they are willing to pay per hour and VMs will run only when the current price is lower than the user's bid. This paper proposes a resource allocation policy that addresses the problem of running deadline-constrained compute-intensive jobs on a pool of composed solely of spot instances, while exploiting variations in price and performance to run applications in a fast and economical way. Our policy relies on job runtime estimations to decide what are the best types of VMs to run each job and when jobs should run. Several estimation methods are evaluated and compared, using trace-based simulations, which take real price variation traces obtained from Amazon Web Services as input, as well as an application trace from the Parallel Workload Archive. Results demonstrate the effectiveness of running computational jobs on spot instances, at a fraction (up to 60% lower) of the price that would normally cost on fixed priced resources.Comment: 14 pages, 4 figures, 11th International Conference on Algorithms and Architectures for Parallel Processing (ICA3PP-11); Lecture Notes in Computer Science, Vol. 7016, 201

    Coiling Instabilities in Multilamellar Tubes

    Full text link
    Myelin figures are densely packed stacks of coaxial cylindrical bilayers that are unstable to the formation of coils or double helices. These myelin figures appear to have no intrinsic chirality. We show that such cylindrical membrane stacks can develop an instability when they acquire a spontaneous curvature or when the equilibrium distance between membranes is decreased. This instability breaks the chiral symmetry of the stack and may result in coiling. A unilamellar cylindrical vesicle, on the other hand, will develop an axisymmetric instability, possibly related to the pearling instability.Comment: 6 pages, 2 figure

    A First Step Towards Automatically Building Network Representations

    Get PDF
    To fully harness Grids, users or middlewares must have some knowledge on the topology of the platform interconnection network. As such knowledge is usually not available, one must uses tools which automatically build a topological network model through some measurements. In this article, we define a methodology to assess the quality of these network model building tools, and we apply this methodology to representatives of the main classes of model builders and to two new algorithms. We show that none of the main existing techniques build models that enable to accurately predict the running time of simple application kernels for actual platforms. However some of the new algorithms we propose give excellent results in a wide range of situations

    Morphology of axisymmetric vesicles with encapsulated filaments and impurities

    Full text link
    The shape deformation of a three-dimensional axisymmetric vesicle with encapsulated filaments or impurities is analyzed by integrating a dissipation dynamics. This method can incorporate systematically the constraint of a fixed surface area and/or a fixed volume. The filament encapsulated in a vesicle is assumed to take a form of a rod or a ring so as to imitate cytoskeletons. In both cases, results of the shape transition of the vesicle are summarized in phase diagrams in the phase space of the vesicular volume and a rod length or a ring radius. We also study the dynamics of a vesicle with impurities coupled to the membrane curvature. The phase separation and the associated shape deformation in the early stage of the dynamical evolution can well be explained by the linear stability analysis. Long runs of simulation demonstrate the nonlinear coarsening of the wavy deformation of the vesicle in the late stage.Comment: 9 pages, 9 figure

    The Velocity Function of Galaxies

    Get PDF
    We present a galaxy circular velocity function, Psi(log v), derived from existing luminosity functions and luminosity-velocity relations. Such a velocity function is desirable for several reasons. First, it enables an objective comparison of luminosity functions obtained in different bands and for different galaxy morphologies, with a statistical correction for dust extinction. In addition, the velocity function simplifies comparison of observations with predictions from high-resolution cosmological N-body simulations. We derive velocity functions from five different data sets and find rough agreement among them, but about a factor of 2 variation in amplitude. These velocity functions are then compared with N-body simulations of a LCDM model (corrected for baryonic infall) in order to demonstrate both the utility and current limitations of this approach. The number density of dark matter halos and the slope of the velocity function near v_*, the circular velocity corresponding to an ~L_* spiral galaxy, are found to be comparable to that of observed galaxies. The primary sources of uncertainty in construction of Psi(log v) from observations and N-body simulations are discussed and explanations are suggected to account for these discrepancies.Comment: Latex. 28 pages, 4 figures. Accepted by Ap

    Multibudded tubules formed by COPII on artificial liposomes

    Get PDF
    COPII-coated vesicles form at the endoplasmic reticulum for cargo transport to the Golgi apparatus. We used in vitro reconstitution to examine the roles of the COPII scaffold in remodeling the shape of a lipid bilayer. Giant Unilamellar Vesicles were examined using fast confocal fluorescence and cryo-electron microscopy in order to avoid separation steps and minimize mechanical manipulation. COPII showed a preference for high curvature structures, but also sufficient flexibility for binding to low curvatures. The COPII proteins induced beads-on-a-string-like constricted tubules, similar to those previously observed in cells. We speculate about a mechanical pathway for vesicle fission from these multibudded COPII-coated tubules, considering the possibility that withdrawal of the Sar1 amphipathic helix upon GTP hydrolysis leads to lipid bilayer destabilization resulting in fission

    3D reconstruction and comparison of shapes of DNA minicircles observed by cryo-electron microscopy

    Get PDF
    We use cryo-electron microscopy to compare 3D shapes of 158 bp long DNA minicircles that differ only in the sequence within an 18 bp block containing either a TATA box or a catabolite activator protein binding site. We present a sorting algorithm that correlates the reconstructed shapes and groups them into distinct categories. We conclude that the presence of the TATA box sequence, which is believed to be easily bent, does not significantly affect the observed shapes
    • 

    corecore