
Analysis of Job Metadata for Enhanced Wall
Time Prediction

Mehmet Soysal, Marco Berghoff, Achim Streit

{mehmet.soysal,marco.berghoff,achim.streit}@kit.edu,
Steinbuch Centre for Computing (SCC),
Karlsruhe Institute of Technology (KIT),

Hermann-von-Helmholtz-Platz 1,
76344 Eggenstein-Leopoldshafen, Germany

Abstract. For efficient utilization of large-scale HPC systems, the task
of resource management and job scheduling is of highest priority. There-
fore, modern job scheduling systems require information about the es-
timated total wall time of the jobs already at submission time. Proper
wall time estimates are a key for reliable scheduling decisions. Typically,
users specify these estimates, already at submission time, based on ei-
ther previous knowledge or certain limits given by the system. Real-world
experience shows that user given estimates are far away from accurate.
Hence, an automated system is desirable that creates more precise wall
time estimates of submitted jobs. In this paper, we investigate different
job metadata and their impact on the wall time prediction. For the job
wall time prediction, we used machine learning methods and the work-
load traces of large HPC systems. In contrast to previous work, we also
consider the jobname and in particular the submission directory. Our
evaluation shows that we can better predict the accuracy of jobs per
user by a factor of seven than most users, without any in-depth analysis
of the job.

1 Introduction

For the execution of applications on HPC systems, a so-called job is created
and submitted to a queue. A job describes the application, needed resources,
and requested wall time. An HPC scheduler manages the queue and orders the
jobs for efficient use of the resources. The jobs are waiting in the queue until
the requested resources are available. The scheduler allocates the resources and
starts the job [1]. For planning future usage of the resources, schedulers typically
use a wall time that corresponds to the maximum execution time for each job.
This wall time, also known as estimated job runtime or wall clock time, is usually
given by the user, or a default value of the system is applied.

Often, users could be able to do a reasonable job runtime estimation, because
they have detailed knowledge about their jobs. Nevertheless, the users tend to
request more time then the job needs, to prevent jobs being terminated too early
by the scheduler. This detailed knowledge is not available without interviewing

the user. Without this knowledge, it is difficult for the scheduler to perform
exact resource planning. Without accurate job wall time estimation, it is almost
impossible to make any preparation of the system for future job requirements.
This challenge is more important if the HPC systems become larger. For future
exascale systems, this can help to improve the overall efficiency significantly.
The project ADA-FS [2] (as part of the DFG-funded priority program 1648
“Software for Exascale Computing” SPPEXA) focuses on pre-staging of input
data for massively parallel jobs. Previous to the data staging it is going to deploy
a private filesystem across the allocated nodes. For this, it is essential to know on
which nodes a queued job will be executed. The scheduler predicts these nodes
based on the user given wall times of the already running jobs. Hence, precise
wall time estimates are critical.

In this paper, we take a closer look at the individual metadata and examine
their impact on the prediction. Machine learning methods are used to determine
the influence of additional metadata. In particular, we use previously unconsid-
ered metadata for jobs in the workload traces of our HPC systems to support
the machine learning methods, e.g., information about the working directory of
jobs, which typically contains valuable information about the jobs itself.

The remainder of this paper is structured as follows: In Section 2 we give
a brief introduction to machine learning and similar approaches. We show in
Section 3 how we prepared our historical data and also explain metrics to rate
our results. In Section 4 we present the results on the used metadata and finish
with a conclusion and outlook to future work in Section 5.

2 Related Work

2.1 Predicting job walltimes

Enhanced predictions of HPC job wall time can be used to improve the schedul-
ing performance [3]. With exact information about the runtime of a job, the
scheduler can predict more accurately when sufficient resources are available to
start queued jobs. [4]. However, the user requested wall time is not close to the
real used wall time. Gibbons [3, 5], and Downey [4] use historical workloads to
predict the wall times of parallel applications. They predict wall times based
on templates. These templates are created by analyzing previously collected
metadata and grouped according to similarities. However, both approaches are
restricted to simple definitions. Smith et al. [6, 7] applied greedy and genetic
search techniques to identify similar jobs and partition them into categories.
The studies as mentioned above use templates to find similarities and use these
for wall time predictions. In our evaluation, we do not use templates. In the
recent years, the machine learning algorithms are used to predict resource con-
sumption in several studies [5, 8–13]. However, these studies do not take into
account the additional metadata we do. There is also a online prediction system
available for the XSEDE [14] ressources – KARNAK [15]. Karnak also uses ma-
chine learning to provide a prediction for users either when their job will start,
or how long a hypothetical job would wait before starting on selected XSEDE

resources. For this prediction the requested wall time, processors, queue, and the
system has to be provided. In our evaluation we consider more metadata

2.2 Machine learning

Machine learning (ML) is about knowledge retrieval from data. It can also be
understood as statistical learning and predictive analytics. In general, machine
learning is a method to learn from a set of samples with a target value and
use the learned data to predict target values from unknown samples. For our
evaluation, we use a supervised machine learning approach [16].

In supervised learning, an algorithm is used to train a model with input data
and its associated output. This process is called training. A trained model pre-
dicts the desired output value from new input samples. However, the success of
the method relies on expert knowledge in the machine learning discipline, to pre-
process the input data and to select the correct model including the optimization
of parameters. These tasks are very complicated and time-consuming. Therefore,
there is a high demand for automatizing the machine learning process, so the
use of Automatic Machine Learning (AUTOML) has gained high acceptance in
a variety of domains. In our evaluation, the AUTOML library auto-sklearn [17]
(based on scikit-learn [18,19]) is used to automate the complex work of machine
learning optimization. In a classical ML process, different models and systems
are explored until the best is chosen. auto-sklearn estimates the best performing
model out of a range of various classifiers or pre-processors. The training of the
model can be time and resource consuming until an accurate model is found.
Therefore, the training can be time-limited.

3 Methods

For the prediction of the wall times, machine learning models are trained with
historical workload data. A large collection of parallel workload traces is available
online [20]. The Parallel Workloads Archive offers workload traces in the stan-
dard workload format [21]. Our workload traces enhances this standard work-
load format. For example, it also offers the initial working directory (IWD) or
the jobname. Here, we have to note that these metadata fields may contain
privacy-sensitive information which should not be published online.

For our evaluation, we use the recorded workloads from two of the HPC-
systems at the Karlsruhe Institute for Technology, the ForHLR I + II [22, 23].
These workload traces are generated for the accounting system to track resource
consumption. The reason for the job termination is not recorded in these logs,
e.g., for technical reasons, by the user, or by the scheduler. It should also be
taken into account that there are similar problems with the parallel workload
archives as described by Feitelson et al. [24].

Incorrect entries have been removed from our records. Also, jobs with shortly
used wall time are eliminated, which indicates technical problems. 177 users
remain for the ForHLR I cluster with a total of 169 358 jobs. 107 143 jobs from

135 users stay for the ForHLR II cluster for our evaluation. The used metadata
entries from the traces are explained below.

3.1 Job Metadata

The used walltime describes the real runtime used by the job in seconds. Jobs
with a used wall time less than 60 seconds are discarded, to ignore jobs with
mistakes in the start script. The aim of our approach is to predict a value close
to the used wall time, hence, this is the target value for the AUTOML model.

Like mentioned earlier, the human given requested walltimes are anything
but ideal. The requested wall time is considered because users might use smaller
wall times for short test runs and longer wall times for the simulation. The
maximum wall time on both machines is three days. The users can omit to specify
the requested wall time, then the default value of 10 minutes is automatically
applied. The requested wall time is an integer representing the required time in
seconds.

Queues are associated with each job. Usually, the system operators define
available resources for the specific queues, e.g., higher priority or specialized
hardware. Both clusters offer a “develop” queue with higher priority but reduced
maximum wall time. The queue name is converted into a categorical value to
make it usable for machine learning.

The requested taskcount—the number of requested cores— is a user requested
value. Some users tend to use a small task count to test their simulations before
they run the real workload. Like wall time, the task count is used as an integer
value. For example, Figure 1 shows a subset of categorized datasets from two

Fig. 1: Categorized dataset for two users, based on the requested walltime and
taskcount.

users based on the requested wall time and task count. User A with 249 jobs used
two different task counts. The used wall time of the jobs are within a small range
and can be easily predicted. User B has submitted 214 jobs, all with identical
task count. Here, the used wall time is spread over a large range. This shows that
the given input values (requested wall time and task count) are not sufficient to
predict the job wall time for user B.

SubmitTime represents the time of job submission, StartTime the time when
the job starts to execute. The users usually observe jobs submitted during busi-
ness hours. Submitting jobs right before the weekend result in unobserved runs.
If users see unplanned behavior in their job, they will cancel them and restart.
While this behavior is very user specific, jobs submitted and started at the the
weekend will likely run until the simulation finishes or the requested wall time
ends and the job gets canceled by the scheduler. To take this observation into
account, the day of the week and the hour of the day was sampled from the
SubmitTime and StartTime.

At least two job parameters are a free chosen string by the user, the jobname
and the initial working directory (IWD). While some users set a specific jobname
for each job, others do not use a jobname at all. There are also some users, which
use a specific jobname for specific parts of a work, e.g., preprocessing, simulation,
and post-processing. More interestingly, in real-world, it can often be observed,
that users organize their jobs by either jobname or the IWD. We split both
parameters into smaller components to gather additional information. For the
jobname, we use a generic regular expression to split the string by the following
delimiter " |-| |.". The split string is then converted to a matrix. For splitting

jobname myjob jan feb 10 16 18

myjob jan.16-18 1 1 0 0 1 1
myjob feb.10-18 1 0 1 1 0 1

Table 1: Example creation of the input matrix for two jobnames.

the IWD a regular expression is used to separate the directory path into three
componentsp The first part points to the parallel file systems. This separates
jobs using the regular home file system or the optimized and faster scratch file
system. The second and third parts contain the directory, where the third part

IWD /p1/joe-abc /p3/joe-xyz sim data run a data/run x 1 x 2 x 3

/p1/joe-abc/sim/run a 1 0 1 0 1 0 0 0 0
/p3/joe-xyz/data/run a 0 1 0 1 1 0 0 0 0
/p1/joe-abc/data/run/x 1 1 0 0 0 0 1 1 0 0
/p1/joe-abc/data/run/x 2 1 0 0 0 0 1 0 1 0
/p1/joe-abc/data/run/x 3 1 0 0 0 0 1 0 0 1

Table 2: Example creation of the input matrix for directory names.

is the basename of the working directory. Table 2 shows a small example, how
directories are converted into a matrix for the machine learning.

3.2 Metrics

The built-in metrics from the scikit libary [25] are used to evaluate the trained
models. Scikit offers several metrics for the regression tasks. The R2 score (co-
efficient of determination) provides a metric how well the trained model will
predict new samples. It is defined by

R2(y, ŷ) = 1−
∑nsamples−1

i=0 (yi − ŷi)
2∑nsamples−1

i=0 (yi − ȳ)
2
, (1)

where yi is the real used walltime and ŷi is the predicted value of the i-th sample,
and

ȳ =
1

nsamples

nsamples−1∑
i=0

yi, (2)

where ȳ as the average of yi. The best possible value is 1.0 which corresponds
to a perfect prediction. The R2 score can also be negative and indicates a badly
trained model [26]. Other metrics are the mean absolute error (MAE) [27] and
the median absolute error (MedAE) [28]. Both measure the difference between
predicted and used wall time. MAE is the mean over all pairs of predicted and
used wall time,

MAE(y, ŷ) =
1

nsamples

nsamples−1∑
i=0

|yi − ŷi|. (3)

MedAE is the median value of these pairs,

MedAE(y, ŷ) = median(|y1 − ŷ1|, . . . , |yn − ŷn|). (4)

In contrast to MAE, MedAE is robust against outliers. The individual users’
historical workload traces are divided into two parts. For this purpose, scikit-
learn provides a function that divides the data into a test dataset and a training
dataset. The default value is to use 25 % as test data and the remaining as
training data. A random selection decides which records are added to which
set [29]. The training dataset is used to train the machine model, called training
set. A high R2 score for the training data implies that AUTOML was able to
find a good model. The other part is used to test the trained model, called test
set. A high R2 score on the test set indicates that the trained model makes good
predictions. In our case, this means that the predicted wall time of the job is
close to the used wall time. Figure 2 shows the results of AUTOML trained with
all above mentioned metadata: requested wall time, task count, initial working
dir, jobname, class, start time, and submit time. Each point represents a pair of

Fig. 2: X-Axis R2 score on training samples, Y -Axis R2 score on test samples
for ForHLR I+II with 20 min auto-sklearn.

the R2 scores from the training and test set for a specific user of the machines
(ForHLR I+II). In Figure 2 an accumulation of the pairs in the right upper half
can be seen, which indicate that a well-trained model for most of the users are
found. Some low scores for the ForHLR II users indicates, that better model for
ForHLR I users are found.

4 Results

The AUTOML model predicted wall times are compared to the user requested
wall times. Therefore, a separate model for each user is trained, and then the
R2 score for the prediction calculated. Figure 3 shows a cumulative distribution
plot of the accuracies for the models for the different users for the ForHLR I. For
the training of the AUTOML model, we used a training set with the requested
walltime as metadata. Besides, we extend the requested wall time with other
metadata records, e.g., req. wall time + task count, req. wall time + jobname,
req. wall time + start time, and so on. Finally, all available metadata are used to
train the AUTOML model. Ideally, a curve should be flat at the beginning and
rise late (high R2 prediction scores). In contrast, 80 % of users have a negative R2

score based on user estimated wall times on ForHLR I. In Figure 5a and 5b these
results are grouped into four categories of the R2 scores for the ForHLR I+II. The
ranges less 0 and from 0 to 0.5 show a really bad and bad trained model. Whereas
in the two ranges from 0.5 to 0.8 and 0.8 to 1 indicate a good and excellent
trained model. The four fields have been selected to illustrate the improvement
in the individual areas. Adding the different fields of the metadata the number
of user in the low R2 ranges decreases and increases in the high ranges. A model
trained with all metadata shows the best results. Similar results for ForHLR II
are plotted in Figures 4 and 5b. Based on user estimated walltimes on ForHLR II
over 90 % of the users have a negative R2 score. In the Table 3 we used the

Fig. 3: X-axis R2 score on test samples, Y -axis cumulative distribution for
ForHLR I.

ForHLR I ForHLR II

Req. Walltime 30min 30min-3h 3h-6h 6h- 30min-3h 30min-3h 3h-6h 6h-

+req. Walltime 22 42 29 84 28 40 25 42

+IWD 28 44 34 71 32 47 14 42

+StartTime 29 49 41 58 30 45 25 35

+SubmitTime 32 47 43 55 31 42 25 37

+TaskCount 28 39 29 81 32 42 18 43

+Jobname 24 45 33 75 30 40 21 44

+Class 26 41 32 78 32 39 19 45

ALL 31 52 42 52 33 46 21 35

User 8 22 20 127 10 21 21 83

Table 3: Number of users categorized in mean absolute error (MAE) values for
the ForHLR I+II.

metric MAE (mean absolute error) to present the results based on time. For this
purpose, we have grouped the users according to the wall time accuracy. The
last line shows the MAE value of the user’s requested wall time as the prediction
and compares it to the used wall time of the jobs. While only eight users have a
mean absolute error less than 30 minutes, over 127 users are more than 6 hours
mean absolute error with their requested wall time. While AUTOML achieves
even with a few metadata fields good results.

It is noticeable that on both machines the start time and submit time make
a significant contribution to accuracy. In Figures 6 and 7 we show the results
using the date components of submittime and starttime. For this, we used the
requested wall time together with the hour of day component (Figure 6) of
the start time and submit time. The day of the week component is presented in
Figure 7. The third line show the results of all job metadata (requested walltime,

Fig. 4: X-axis R2 score on test samples, Y -axis cumulative distribution for
ForHLR II.

taskcount, initital working dir, jobname, class, starttime, and submittime), while
using only the date components for submittime and starttime.

All three lines in both figures are very close together, which indicates that
the components, hour of day and day of week, from StartTime and SubmitTime
provide significant information for the model.

In Figures 8 and 9 the comparison of the user prediction and AUTOML
trained models can be seen. Figure 8 the mean aboslute error (MAE) in hours.
Figure 9 shows the cumulative distribution for the median absolute error (medAE)
in hours and in both Figures the horizontal line at 0.6 on the Y -Axis represents
60 % of the users. The user estimations, of both clusters, has a medAE devia-
tion of about 7.4 hours. A model trained with AUTOML shows for 60 % of the
users a medAE of approximately 1 hour on the ForHLR I and 1.4 hours for the
FORHLR II. Figure 8 shows the difference for 60 % of the users using MAE as
a metric. Using AUTOML improves the accuracy from 15.4 hours (user estima-
tion) to 4.6 hours (AutoML). The accuracy of the predictions for the ForHLR II
improve from almost 16 hours to only 3 hours by AUTOML. Taking into ac-
count that only job metadata is used without a knowledge of the payload, this
is a good result. More detailed knowledge about the job could result in better
predictions, but require in-depth knowledge about the tools and applications of
the users. This can not be done in an automated way for the vast number of
users.

A trained model can be saved to disk for model persistence. This file can be
then loaded within seconds and subsequently be used for further predictions [30].
The size of the compressed trained model files are up to 280 MB per user on

the ForHLR I and 214 MB on the ForHLR II. The average size is around 23 MB
per user. We use a generic regular expression of the job name and the working
directory, without any further processing. This leads to a drastic increase in the
dimension of the input data. For top users, this results in up to 5 000 columns for

(a) Y -axis number of users for ForHLR I (b) Y -axis number of users for ForHLR II.

Fig. 5: Histogram of categories of the R2 score

Fig. 6: X-axis R2 score on test samples, Y -axis cumulative distribution for
ForHLR I with only StartTime hour.

Fig. 7: X-axis R2 score on test samples, Y -axis cumulative distribution for
ForHLR I with only StartTime weekday.

Fig. 8: Comparison of MAE for ForHLR I+II. X-axis mean absolute error in
hours, Y-axis cumulative distribution.

Fig. 9: Comparison of medAE for ForHLR I+II. X-axis Median absolute error in
hours, Y-Axis cumulative distribution.

input parameters. These high numbers are caused by the user giving his direc-
tories and jobs names which contain many characters of our regular expression.
Analyzing this high dimension can cause the well-known problem “curse of di-
mensionality” [31,32]. The problem describes issues with high dimensional data.
Data with increasing dimension becomes sparse. This sparsity is problematic
for any machine learning methods. In our case, a user creating a new directory
for every job could make the information of the working directory useless for
us, because no more correlations can be recognized as each date is individual.
AUTOML use a principal component analysis [33] to reduce the dimension of
the input parameter by omitting meaningless columns. This helps to reduce this
issue, but this process needs more time and resources to recognize meaningless
dimensions. Another approach could be to apply a compression algorithm on
these user chosen strings or to discard meaningless names right before training
the machine model.

5 Conclusion and Future Work

In this work, we have shown that all the chosen job metadata contains infor-
mation which improves the wall time predictions. In particular, the previously
unnoticed metadata for the initial working directory and jobname provide an
additional source of information. Automatic prediction of job wall times is pos-
sible without an in-depth analysis of user data and behavior. Good prediction
models can be trained with very simple job metadata without having precise
knowledge of the user’s work. The expressiveness of the job metadata depends
on the operating model of each supercomputer and the way the users use that
machine.

A further examination with workload traces from other machines will be con-
ducted in the future, e.g., from other HPC systems in Germany, as our approach

uses general job metadata as long as enough metadata like the jobname and ini-
tial working directory is available. These are available in most schedulers. The
preprocessing of the data is also generic so that no cluster-specific parameters
are used.

Providing these predictions to the scheduler is the next step. This means that
the scheduler can use the prediction as a basis for its planning; instead, the user
requested wall time. The user requested wall time could be used as a guaranteed
wall time and the planning could be done with the predicted wall time.

Another necessary investigation is the accuracy of predictions over time. A
model that has been trained could become inaccurate over time due to a change
of the user behavior, i.e., submitting different workloads and applications in the
jobs. Another topic is the fundamental problem with unknown users, known as
the cold start. In our approach, a model is trained for each user. There is no
model for new users which we can use for prediction. A possible solution for the
cold start problem could be an evaluation with a model containing all the job
records of all users.

6 Acknowledgement

This work inside of the project ADA-FS is funded by the DFG Priority Program
“Software for Exascale Computing” (SPPEXA, SPP 1648), which is gratefully
acknowledged.

References

1. Matthias Hovestadt, Odej Kao, Axel Keller, and Achim Streit. Scheduling in hpc
resource management systems: Queuing vs. planning. In Dror Feitelson, Larry
Rudolph, and Uwe Schwiegelshohn, editors, Job Scheduling Strategies for Parallel
Processing, pages 1–20, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.

2. Sebastian Oeste, Michael Kluge, Mehmet Soysal, Achim Streit, Marc-André Vef,
and André Brinkmann. Exploring opportunities for job-temporal file systems with
ada-fs. 1st Joint International Workshop on Parallel Data Storage and Data In-
tensive Scalable Computing Systems, 2016.

3. Richard Gibbons. A historical application profiler for use by parallel schedulers.
In Job scheduling strategies for parallel processing, pages 58–77. Springer, 1997.

4. Allen B. Downey. Predicting queue times on space-sharing parallel computers.
In Parallel Processing Symposium, 1997. Proceedings., 11th International, pages
209–218. IEEE, 1997.

5. Richard Gibbons. A historical profiler for use by parallel schedulers. Master’s
thesis, University of Toronto, 1997.

6. Warren Smith, Ian Foster, and Valerie Taylor. Predicting application run times
using historical information. In Job Scheduling Strategies for Parallel Processing,
pages 122–142. Springer, 1998.

7. Warren Smith, Valerie Taylor, and Ian Foster. Using run-time predictions to esti-
mate queue wait times and improve scheduler performance. In Workshop on Job
Scheduling Strategies for Parallel Processing, pages 202–219. Springer, 1999.

8. Andréa Matsunaga and José AB Fortes. On the use of machine learning to predict
the time and resources consumed by applications. In Proceedings of the 2010
10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing,
pages 495–504. IEEE Computer Society, 2010.

9. Nirav H. Kapadia and José AB Fortes. On the design of a demand-based network-
computing system: The purdue university network-computing hubs. In High Per-
formance Distributed Computing, 1998. Proceedings. The Seventh International
Symposium on, pages 71–80. IEEE, 1998.

10. Ahuva W. Mu’alem and Dror G. Feitelson. Utilization, predictability, workloads,
and user runtime estimates in scheduling the ibm sp2 with backfilling. IEEE
Transactions on Parallel and Distributed Systems, 12(6):529–543, 2001.

11. Farrukh Nadeem and Thomas Fahringer. Using templates to predict execution
time of scientific workflow applications in the grid. In Proceedings of the 2009 9th
IEEE/ACM International Symposium on Cluster Computing and the Grid, pages
316–323. IEEE Computer Society, 2009.

12. Warren Smith. Prediction services for distributed computing. In Parallel and
Distributed Processing Symposium, 2007. IPDPS 2007. IEEE International, pages
1–10. IEEE, 2007.

13. Dan Tsafrir, Yoav Etsion, and Dror G Feitelson. Backfilling using system-generated
predictions rather than user runtime estimates. IEEE Transactions on Parallel and
Distributed Systems, 18(6), 2007.

14. Xsede. https://www.xsede.org/.
15. Karnak start/wait time predictions. http://karnak.xsede.org/karnak/index.

html.
16. Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of ma-

chine learning. MIT press, 2012.
17. Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Springenberg, Manuel

Blum, and Frank Hutter. Efficient and robust automated machine learning. In
C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, editors,
Advances in Neural Information Processing Systems 28, pages 2962–2970. Curran
Associates, Inc., 2015.

18. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

19. Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian Pedregosa, Andreas
Mueller, Olivier Grisel, Vlad Niculae, Peter Prettenhofer, Alexandre Gramfort,
Jaques Grobler, Robert Layton, Jake VanderPlas, Arnaud Joly, Brian Holt, and
Gaël Varoquaux. API design for machine learning software: experiences from the
scikit-learn project. In ECML PKDD Workshop: Languages for Data Mining and
Machine Learning, pages 108–122, 2013.

20. Parallel workloads archive. http://www.cs.huji.ac.il/labs/parallel/

workload/.
21. The standard workload format. http://www.cs.huji.ac.il/labs/parallel/

workload/swf.html.
22. Forhlr i, kit/scc. https://www.scc.kit.edu/dienste/forhlr1.php.
23. Forhlr ii, kit/scc. https://www.scc.kit.edu/dienste/forhlr2.php.
24. Dror G. Feitelson, Dan Tsafrir, and David Krakov. Experience with using the par-

allel workloads archive. Journal of Parallel and Distributed Computing, 74(10):2967
– 2982, 2014.

25. scikit - regression metrics. http://scikit-learn.org/stable/modules/model_

evaluation.html#regression-metrics.
26. scikit - r2 score. http://scikit-learn.org/stable/modules/generated/

sklearn.metrics.r2_score.html#sklearn.metrics.r2_score.
27. scikit - mean absolute error. http://scikit-learn.org/stable/modules/

generated/sklearn.metrics.mean_absolute_error.html#sklearn.metrics.

mean_absolute_error.
28. scikit - median absolute error. http://scikit-learn.org/stable/modules/

generated/sklearn.metrics.median_absolute_error.html#sklearn.metrics.

median_absolute_error.
29. scikit - datasset spliting.
30. scikit - model persistence. http://scikit-learn.org/stable/modules/model_

persistence.html.
31. Richard Bellman. Dynamic programming. Courier Corporation, 2013.
32. G. Hughes. On the mean accuracy of statistical pattern recognizers. IEEE Trans-

actions on Information Theory, 14(1):55–63, January 1968.
33. Karl Pearson. Liii. on lines and planes of closest fit to systems of points in space.

The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Sci-
ence, 2(11):559–572, 1901.

