566 research outputs found
Entanglement in finite spin rings with noncollinear Ising interaction
We investigate the entanglement properties of finite spin rings, with
noncollinear Ising interaction between nearest neighbours. The orientations of
the Ising axes are determined either by the spin position within the ring
(model A) or by the direction of the bond (model B). In both cases, the
considered spin Hamiltonians have a point group symmetry, rather than a
translation invariance, as in spin rings with collinear Ising interaction. The
ground state of these models exhibit remarkable entanglement properties,
resembling GHZ-like states in the absence of an applied magnetic field (model
B). Besides, the application of an homogeneous magnetic field allows to modify
qualitatively the character of the ground state entanglement, switching from
multipartite to pairwise quantum correlations (both models A and B)
Cochlear injury and adaptive plasticity of the auditory cortex
Growing evidence suggests that cochlear stressors as noise exposure and aging can induce homeostatic/maladaptive changes in the central auditory system from the brainstem to the cortex. Studies centered on such changes have revealed several mechanisms that operate in the context of sensory disruption after insult (noise trauma, drug-, or age-related injury). The oxidative stress is central to current theories of induced sensory-neural hearing loss and aging, and interventions to attenuate the hearing loss are based on antioxidant agent. The present review addresses the recent literature on the alterations in hair cells and spiral ganglion neurons due to noise-induced oxidative stress in the cochlea, as well on the impact of cochlear damage on the auditory cortex neurons. The emerging image emphasizes that noise-induced deafferentation and upward spread of cochlear damage is associated with the altered dendritic architecture of auditory pyramidal neurons. The cortical modifications may be reversed by treatment with antioxidants counteracting the cochlear redox imbalance. These findings open new therapeutic approaches to treat the functional consequences of the cortical reorganization following cochlear damage
Hyperfine-induced decoherence in triangular spin-cluster qubits
We investigate hyperfine-induced decoherence in a triangular spin-cluster for
different qubit encodings. Electrically controllable eigenstates of spin
chirality (C_z) show decoherence times that approach milliseconds, two orders
of magnitude longer than those estimated for the eigenstates of the total spin
projection (S_z) and of the partial spin sum (S_{12}). The robustness of
chirality is due to its decoupling from both the total- and individual-spin
components in the cluster. This results in a suppression of the effective
interaction between C_z and the nuclear spin bath
Towards the chemical tuning of entanglement in molecular nanomagnets
Antiferromagnetic spin rings represent prototypical realizations of highly
correlated, low-dimensional systems. Here we theoretically show how the
introduction of magnetic defects by controlled chemical substitutions results
in a strong spatial modulation of spin-pair entanglement within each ring.
Entanglement between local degrees of freedom (individual spins) and collective
ones (total ring spins) are shown to coexist in exchange-coupled ring dimers,
as can be deduced from general symmetry arguments. We verify the persistence of
these features at finite temperatures, and discuss them in terms of
experimentally accessible observables.Comment: 5 pages, 4 figure
Spin-Electric Coupling in Molecular Magnets
We study the triangular antiferromagnet Cu in external electric fields,
using symmetry group arguments and a Hubbard model approach. We identify a
spin-electric coupling caused by an interplay between spin exchange, spin-orbit
interaction, and the chirality of the underlying spin texture of the molecular
magnet. This coupling allows for the electric control of the spin (qubit)
states, e.g. by using an STM tip or a microwave cavity. We propose an
experimental test for identifying molecular magnets exhibiting spin-electric
effects.Comment: 5 pages, 3 figure
Geomorphology of the lower Mesopotamian plain at Tell Zurghul archaeological site
The landscape of the Lower Mesopotamia Plain (LMP) has been moulded by water-related processes, consequently, its Holocene geomorphic evolution has been strictly connected to the fluvial process and the anthropogenic water management since 8000 BC. About 6000 years ago, during the maximum marine ingression, the modern cities of Nasiriyah and Al-Amara were close to the Persian Gulf shoreline. Successively, the Tigris and Euphrates developed two wide delta systems, that prograded south-eastward developing a complex fluvial network. Remote sensing investigations over the LMP using satellite imagery and topographic analysis revealed the surficial expression of deltaic bodies with a lobate planform and several terminal distributary channels (TDCs), classifiable as tidal-influenced river-dominated deltas. Tell Zurghul archaeological site, belonging to the ancient State of Lagash, expanded in the western part of the recognized TDC during the Mid- and Late Holocene. Indeed, the occurrence of a divergent multi-channel system supplied water for the early civilizations, which improved the water management and prevented floods through a canals network. Therefore, the multi-sensor remote sensing approach over an area of 2850 km2 allowed us to recognize several fluvial landforms, both still active and relict, attributable to the Holocene riverscape of the LMP, as well as anthropogenic features and aeolian deposits. The Main map is a geomorphological map at the scale of 1:120,000 centred on Tell Zurghul, focusing on the geometry, spatial distribution, and state of activity of erosional and constructional landforms
Neutral and charged electron-hole complexes in artificial molecules: quantum transitions induced by the in-plane magnetic field
We theoretically investigate the properties of neutral and charged excitons and of the biexciton in vertically coupled quantum dots, as a function of the in-plane magnetic field B-parallel to. The main effect of the field consists in the suppression of the bonding-antibonding splitting, and in the resulting enhancement of the interdot correlations. As a consequence, the excitons form with the additional carrier a bound or an unbound complex depending on the sign of the charging, whereas the biexciton undergoes a transition between different quantum states with increasing B-parallel to. The discussed behaviors and transitions show up in the field dependence of experimentally accessible quantities, such as the charged-exciton and biexciton binding energies
Spin electric effects in molecular antiferromagnets
Molecular nanomagnets show clear signatures of coherent behavior and have a
wide variety of effective low-energy spin Hamiltonians suitable for encoding
qubits and implementing spin-based quantum information processing. At the
nanoscale, the preferred mechanism for control of quantum systems is through
application of electric fields, which are strong, can be locally applied, and
rapidly switched. In this work, we provide the theoretical tools for the search
for single molecule magnets suitable for electric control. By group-theoretical
symmetry analysis we find that the spin-electric coupling in triangular
molecules is governed by the modification of the exchange interaction, and is
possible even in the absence of spin-orbit coupling. In pentagonal molecules
the spin-electric coupling can exist only in the presence of spin-orbit
interaction. This kind of coupling is allowed for both and
spins at the magnetic centers. Within the Hubbard model, we find a relation
between the spin-electric coupling and the properties of the chemical bonds in
a molecule, suggesting that the best candidates for strong spin-electric
coupling are molecules with nearly degenerate bond orbitals. We also
investigate the possible experimental signatures of spin-electric coupling in
nuclear magnetic resonance and electron spin resonance spectroscopy, as well as
in the thermodynamic measurements of magnetization, electric polarization, and
specific heat of the molecules.Comment: 31 pages, 24 figure
Calculation of pure dephasing for excitons in quantum dots
Pure dephasing of an exciton in a small quantum dot by optical and acoustic
phonons is calculated using the ``independent boson model''. Considering the
case of zero temperature the dephasing is shown to be only partial which
manifests itself in the polarization decaying to a finite value. Typical
dephasing times can be assigned even though the spectra exhibits strongly
non-Lorentzian line shapes. We show that the dephasing from LO phonon
scattering, occurs on a much larger time scale than that of dephasing due to
acoustic phonons which for low temperatures are also a more efficient dephasing
mechanism. The typical dephasing time is shown to strongly depend on the
quantum dot size whereas the electron phonon ``coupling strength'' and external
electric fields tend mostly to effect the residual coherence. The relevance of
the dephasing times for current quantum information processing implementation
schemes in quantum dots is discussed
Antioxidant treatment with coenzyme Q-ter in prevention of gentamycin ototoxicity in an animal model
Aminoglycosides, such as gentamycin, are well known ototoxic agents. Toxicity occurs via an activation process involving the formation of an iron-gentamycin complex with free radical production. Antioxidants like Q-ter (a soluble formulation of coenzyme Q10, CoQ10), can limit or prevent cellular ototoxic damage. The present study was designed to investigate the possible protective effects of Q-ter on gentamycin ototoxicity in albino guinea pigs (250-300 g). Animals were divided into five experimental groups: I, a sham control group given an intra-peritoneal (I.P.) injection of 0.5 ml saline (SHAM); II, gentamycin group (GM), treated with an injection of gentamycin (100 mg/ kg); III, gentamycin + Q-ter group (GM+Q-ter), treated with gentamycin (same dose as group II) and an I.P. injection of coenzyme Q10 terclatrate (Q-ter) at 100 mg/kg body weight; IV, injected with gentamycin (100 mg/kg) plus saline; V, treated with Q-ter alone (100 mg/ kg). All animals were treated for 14 consecutive days. Auditory function was evaluated by recording auditory brainstem responses (ABR) at 15 and 30 days from the beginning of treatment. Morphological changes were analyzed by rhodamine-phalloidine staining. Gentamycininduced progressive high-frequency hearing loss of 45-55 dB SPL. Q-ter therapy slowed and attenuated the progression of hearing loss, yielding a threshold shift of 20 dB. The significant loss of outer hair cells (OHCs) in the cochlear medio-basal turn in gentamycin-treated animals was not observed in the cochleae of animals protected with Q-ter. This study supports the hypothesis that Q-ter interferes with gentamycin-induced free radical formation, and suggests that it may be useful in protecting OHC function from aminoglycoside ototoxicity, thus reducing hearing loss
- …