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We theoretically investigate the properties of neutral and charged excitons and of the biexciton in vertically
coupled quantum dots, as a function of the in-plane magnetic fieldBi. The main effect of the field consists in
the suppression of the bonding-antibonding splitting, and in the resulting enhancement of the interdot corre-
lations. As a consequence, the excitons form with the additional carrier a bound or an unbound complex
depending on the sign of the charging, whereas the biexciton undergoes a transition between different quantum
states with increasingBi. The discussed behaviors and transitions show up in the field dependence of experi-
mentally accessible quantities, such as the charged-exciton and biexciton binding energies.
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I. INTRODUCTION

The complete spatial confinement of the carriers achieved
in semiconductor quantum dots(QDs) results in novel physi-
cal phenomena of fundamental interest1 and makes them po-
tential building blocks of future quantum-devices and
computers.2 Indeed, the continuous refinement of the differ-
ent fabrication techniques achieved in the last two decades
has allowed an increasing degree of control on the geometry,
composition and spatial arrangement of these “artificial at-
oms,” as well as a fine engineering of their electronic and
optical properties.3

Particularly relevant in this last respect and in view of
possible optoelectronic applications are the self-assembled
quantum dots (SADs). Typical SADs are quasi-two-
dimensional(2D) systems, with an in-plane spatial confine-
ment much weaker than the one in the growthszd direction.4

In recent years the formation of QD pillars with tuneable
interdot barriers has also been demonstrated, where the inter-
dot tunneling of the carriers results in a coherent coupling
between neighboring dots and in the delocalization of the
wave functions over the so-called “artificial molecule.”5 As a
consequence, the orbital excitations associated to the motion
along z, which are effectively frozen in single QDs and in
planar artificial molecules, become energetically accessible
to applied electric and magnetic fields, thus giving the sys-
tem a full three-dimensional character.

Detailed information on the interband excitations of arti-
ficial atoms are provided by their optical response and by its
dependence on the applied magnetic field. Typical features
emerging in the magneto-optical studies of electrically
neutral6 and charged7 QDs are confinement-regime depen-
dent diamagnetic shifts of the exciton energies, removal of
the degeneracy characterizing cylindrically symmetric dots,
estimates of the electron-hole(reduced) effective mass and
of the carrier separation. More recently, the effect of a verti-
cal magnetic field on the optical and transport properties of
coupled dots has also been proposed as a sensitive test of the
interdot coherent coupling8 and of the few-electron quantum
phase,9 respectively. Indeed, a magnetic field is a precious

tool for the investigation of low-dimensional heterostruc-
tures, specially those characterized by length scales
comparable to that of the magnetic confinement. Therefore,
while in single, nearly 2D QDs the only relevant component
of the field is the one along the growth directionsB'd,
in vertically coupled dots the in-plane componentsBid
also plays a crucial role: On the one hand, it breaks the
system’s possible cylindrical symmetry and mixes the
degrees of freedom corresponding to the in-plane and
vertical motion; on the other hand, it tunes the interdot-
coupling regime, thus inducing in the few-particle states
transitions reminescent of those that one can in principle
obtain by varying the width of the interdot barrier.10 Due to
its relevance to the QD-based implementation of quantum-
information processing,11 such transverse-field induced tran-
sitions have been already investigated in the two-electron
case,12 whereas less attention has been devoted to that of
electron-hole complexes.

In this paper we theoretically investigate the field depen-
dence of neutral and charged excitons, and of biexcitons in
vertically coupled QDs. The main focus is on the interdot-
correlation effects, largely enhanced by the in-plane mag-
netic fieldBi and essentially determining carrier localization
within the artificial molecules. In fact, whereas in semicon-
ductor heterostructures of higher dimensionality the forma-
tion of electron-hole complexes is due to genuine Coulomb
correlations, in artificial atoms it mainly arises from the
three-dimensional(3D) spatial confinement of the carriers. In
particular, in the strong-confinement limit the Coulomb
effects only provide energy renormalizations, which can be
qualitatively described within a perturbative picture. The
artificial molecules of our present concern are somehow in
between these two limiting cases. In fact, while strongly
confined in the plane, the carriers can still localize in two
different sites(dots) in the growth direction. As a result, the
bound or unbound nature of the few-particle states is deter-
mined by the combined effect of the intradot(confinement-
induced) Coulomb interactions and of the interdot spatial
correlations.

The paper is organized as follows: In Sec. II we illustrate
our numerical approach to the calculation of the single- and
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few-particle states, as well as to the optical and correlation
properties of the latter; in Sec. III we discuss the results,
concerning single electrons and holes, neutral- and charged-
excitons, and biexcitons; in Sec. IV we finally summarize
our findings.

II. THEORETICAL MODEL

As a first step, we calculate the electron and hole single-
particle (SP) states, as determined by the 3D confinement
and by the applied magnetic field(Sec. II A). These results
provide the ingredients for the investigation of the Coulomb-
interacting electron-hole complexes(Sec. II B). Finally, we
compute the carrier-carrier pair-correlation functions, further
characterizing the few-particle states, and the optical proper-
ties of the system, resulting from the radiative recombination
of electron-hole pairs(Sec. II C).

A. Single-particle states

Our modelling of the double-dot SP properties is devel-
oped within the theoretical framework of the envelope-
function approximation, which is known to give a good de-
scription of the system, provided that the confining potential
(i.e., the heterostructure composition) varies sufficiently
slowly on the length scale of the lattice constant.1 Besides,
since the energy region of our concern is relatively close to
the semiconductor band gap, we use the single-band approxi-
mation for both the conduction and the valence bands
(effective-mass approach). The SP energiesea

x and wave
functionfa

xsr d thus correspond to the eigenvalues and eigen-
states of the following Hamiltonian:

horb
x sr d =

1

2mx
* S− i" ¹ ±

ueu
c

AD2

+ Vxsr d, s1d

where the vector potential isA = 1
2B3 r (symmetric gauge),

while x=e,h, mx
* is the(electron or hole) effective mass, and

the plus(minus) sign refers tox=e sx=hd.
We numerically solve Eq.(1) for arbitrary confinement

potential and field orientation by discretizing it on a homo-
geneous real-space grid ofN=N13N23N3 points, identified
by the vectorsr i =ok=1

3 sli
k−Nk/2dDkêk, with li

k=1, . . . ,Nk

andê1,2,3= x̂ , ŷ , ẑ. The resulting finite-difference equation can
be rephrased in terms of the following discrete eigenvalue
problem:

o
j=1

N H 1

2mx
* F− "2s¹2di j 7

2i"ueu
c

sA · ¹ di j

+
e2

c2sA2di jG + Vij
xJfa,j

x = ea
xfa,i

x , s2d

where fa,i
x =fa

xsr id. The vector- and the confining-potential
operators are diagonal in the real-space basis:Vij =di jVsr id
andsA2di j =di jfAsr idg2, whereas the two differential operators
act on the wave function vectors asfollows:

o
j=1

N

s¹2di jfa,j = o
k=1

3
fasr i + Dkekd − 2fasr id + fasr i − Dkekd

Dk
2 ,

s3d

o
j=1

N

sA · ¹ di jfa,j = o
k=1

3

Ak,i
fasr i + Dkekd − fasr i − Dkekd

2Dk
,

s4d

with Ak,i =Aksr id. The results discussed hereafter are obtained
with N1=N2=N3=64; the 262 1443262 144 sparse Hamil-
tonian matrix is diagonalized by means of the Lanczos algo-
rithm.

The coupling of the magnetic field with the spin degrees
of freedom are accounted for by the following Zeeman
terms:13

hspin
x sSe,Jhd =

mB

"
o

i=x,y,z
BiSge,i

* Se,i −
gh,i

*

3
Jh,iD , s5d

where thege,i
* and gh,i

* are the elelctron and heavy-hole
effective g factors, respectively. However, the spin degrees
of freedom mainly affect the few-particle states of our
present concern through the statistics, rather than through the
Zeeman splittings, which are suppressed by the optically in-
duced antiparallel orientation of the electron and hole
spins.14 Therefore, in the following the contribution of
hspin

x sSe,Jhd to the single- and few-particle energies will be
neglected.

B. Few-particle states

In a second step, we include the Coulomb interactions
between carriers. The second-quantization, full many-body
Hamiltonian H is given by the sum of a single-particle
part,

Hsp= o
x=e,h

o
a=1

nx

ea
xĉx,a

† ĉx,a,

and of the one accounting for the carrier-carrier Coulomb
interactions, namely

Hc = 1
2 o

x=e,h
o

abgd=1

nx

Vabgd
xx ĉx,a

† ĉx,g
† ĉx,dĉx,b

+ o
ab=1

ne

o
gd=1

nh

Vabgd
eh ĉx,a

† ĉx8,g
† ĉx8,dĉx,b, s6d

where nx are the number of SP states that are taken into
account. The results discussed in the following are obtained
with ne=nh=20. The Coulomb matrix elements read

Vabgd
xx8 =E E ffa

xsr dg*ffg
x8sr 8dg*fd

x8sr 8dfb
xsr d

krur − r 8u
dr dr 8,

s7d

beingkr is the static dielectric constant of the semiconductor
medium. These matrix elements are calculated by numeri-
cally integrating the following expression:
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Vabgd
xx8 = ±

e2

k
E F−1F 1

k2F̃ab
x skdGFgd

x8sr ddr , s8d

where Fab
x sr d=ffa

xsr dg* fb
xsr d, and F̃ab

x skd=FfFab
x sr dg is

its Fourier transform.
The overall, sparse HamiltonianH=Hsp+Hc is directly

diagonalized within a truncated Hilbert space generated by
the Nconf configurations of lowest SP energykHspl corre-
sponding to fixed numbers of electronssNed and holessNhd,
with defined spin orientations.

C. Spatial correlation and optical properties

In order to investigate the spatial correlations between any
two carriers in the few-particle eigenstateuCl, we compute
their spin-resolved pair correlation functions

gxx8
C sr 1,r 2d = kCuĉx

†sr 1dĉx8
† sr 2dĉx8sr 2dĉxsr 1duCl

= o
ab=1

nx

o
gd=1

nx8

Fabsr 1dFgdsr 2dkCuĉa
†ĉg

†ĉdĉbuCl,

s9d

which gives the joint probability of finding carrierx in r 1

and carrierx8 in r 2, being sx ,x8d=se,hd ^ s↑ , ↓ d and ĉxsr d
the (electron or hole) field operator. As a further step, we
integrate gxx8sr 1,r 2d over the center-of-mass coordinates
R= 1

2sr 1+r 2d,

ḡxx8
C sr d =E gxx8sR + r /2,R − r /2ddR s10d

gives the probability of finding the two particles at a relative
position r =r 1−r 2.

As a final step, we compute the artificial molecule’s linear
optical properties, resulting from the interband transitions

FIG. 1. Single-particle energies for electrons
(left axis, black lines) and holes(right axis, gray
lines) in a symmetric double QD, as a function of
the in-plane magnetic field. The curves corre-
spond to theB (solid lines) andAB (dashed lines)
eigenstates. The insets show the square of the
electron(a) and hole(b) B wave functions along
z for two selected values ofBi, namely 0 T(solid
lines) and 15 T(dashed lines), for x=y=0. In the
lower insets we plot the electron charge density
integrated in the interdot barrier for the above
confinement potential[panel(c)], as well as for a
double-well (d) profile in the growth direction
(solid lines, left axes), respectively; the magnetic-
field dependence ofDBAB is also shown(dotted
lines, right axes). In the former case we identify
the barrier with the regionuzu,a/Î3; in the latter
case, the width of each well isl =12 nm, the
width and height of the interdot barrier are
d=4 nm andV0

e=400 meV, respectively.
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between different electron-hole complexes. The amplitude
of such radiative transitions is given by the following
expression:

Ai→f = kC fuo
a=1

ne

o
b=1

nh

Mabĉe,aĉh,buCil, s11d

where Mab~efa
esr dfb

hsr ddr , while uCil and uC fl are the
initial and final states, respectively. The luminescence
spectra are finally obtained by summing over different
initial uCl

Ne,Nhl and final statesuCl8
Ne−1,Nh−1l, the former

being thermally distributed according to the Boltzmann
distribution,

Isv,Td = o
l,l8

uAl→l8u
2Ds"v − El + El8de

−El/kBT, s12d

with the Lorentzian broadening of the emission line
Ds"v−El+El8d=2g / sv2+g2d determined by the phenom-
enological paramenterg.

III. RESULTS

In this section we summarize our understanding of the
artificial molecule’s field-dependent properties. We start by
discussing the SP properties(Sec. III A): These provide the
ingredients for the calculation and interpretation of the inter-
acting states, which include neutral and charged excitons
(Sec. III B), as well as biexcitons(Sec. III C). We finally
show the optical response(luminescence spectra) of the sys-
tem which results from the radiative recombination of the
above electron-hole complexes(Sec. III D).

A. Single particle states

Within our prototypical model of an artificial molecule,
the spatial confinement of the carriers is accounted for by a
separable confining potentialVsr ,zd=Vplsrd+Vvszd, where
r2=x2+y2. The in-plane and the vertical terms read:15

Vplsrd = 1
2m* vxy

2 r2, s13d

Vvszd =
m* vz

2

8a2 sz2 − a2d2. s14d

The in-plane components of the wave functions, resulting
from the 2D parabolic confinement, are the Fock-Darwin
states, which are known to produce results in good agree-
ment with the experiments, especially as far as the lowest
shells are concerned.1 In the absence of an in-plane magnetic
field, the interdot coupling only depends onVv: In particular,
a determines both the distance between the centers of the
two dots, d=2a, and the maximum height of the interdot
barrier, Vvs0d=m* vz

2a2/8. Hereafter, we consider two
GaAs/AlGaAs coupled QDs desciribed by the following ma-
terial and confinement parameters:me

* =0.067m0,
mh

* =0.38m0, kr =12.9, "v0
e=15 meV, "v0

h=4.6 meV,
"vz

e=50 meV, "vz
h=15.4 meV,a=5.5 nm. As discussed in

greater detail below, these structural parameters provide a
coherent interdot coupling for both electrons and holes; be-

sides, the lowest excitations associated to the motion in
the growth direction are comparable to the energy scales
characterizing a magnetic field of achieveable intensity, as
required for the discussed behaviors to be experimentally
observable.

The in-plane magnetic fieldB=Bix̂ couples the degrees
of freedom corresponding to thexy and to thez directions,
and reduces the symmetries of the system: In fact, while
horbsBi=0d commutes with the reflection operatorsAx, Ay

and Az, horbsBiÞ0d is only symmetric with respect to
the reflection about theyz plane and thex axis. Figure 1
shows the energies of the bondingsBd and antibonding
sABd orbitals, namely the ground- and first excited-state, as a
function of Bi. At zero field, both states are characterized
by an azimuthal quantum numberm=0 (s shell), and are
either symmetric sAz= +1d or antisymmetric sAz=−1d
with respect to the reflection about thexy plane: Therefore,
u0l= um=0,Az= +1l andu1l= u0,−1l. The field is seen to sup-
press the energy splittingDBAB;eAB−eB=e1−e0 for both
electrons and holes(black and gray lines, respectively),
while no sensible change is observed in the profile of theB
and AB wave functions alongx=y=0 [Figs. 1(a) and 1(b)].
The clear asymmetry between electrons and holes is due to
the larger effective mass of the latter, which divides all the
kinetic terms inhorbsr d, thus resulting in a larger localization
of the holes within each dot(insets of Fig. 1) and in a smaller
effect of the magnetic field. In order to clarify the relation
betweenDBAB and the carrier distribution at the interdot bar-
rier, we have integrated the electron charge density in this
region and plotted the resulting percentageP as a function of
Bi. The field increase from 0 to 14 T reduces the difference
betweenPB andPAB from 10% to 2%[Fig. 1(c)]. However,
unlike the case whereDBAB is suppressed by increasing the
barrier width, here the two dots are quantum-mechanically
coupled even in the limit of a vanishing energy splitting.
Figure 1(d) corresponds to a double-well profile of the con-
finement potential in the growth direction: in spite of the
quantitative differences between the two cases, which de-
pend on the different barrier smoothnesses andDBAB values
at zero field, the convergence ofPB andPAB to a finite value
clearly turns out to be a general feature.

A deeper insight into the magnetic-field effect can be pro-
vided by the average values of the field-dependent terms in
the SP Hamiltonian(Fig. 2),

dsBid ; khorb − horbsBi = 0dl =
e2Bi

2

8m* c2kz2 + y2l ±
eBi

2m* c
kLxl,

s15d

whereLx=ypz−zpy. The first term(denoted by circles in the
figure) gives rise to a diamagnetic contribution, which tends
to increaseDBAB. In fact, the average value ofky2+z2l is
systematically higher for theAB state(dotted line) than for
the B one (solid line). On the contrary, the second
term (squares) energetically favors theAB orbital and domi-
nates over the first one, thus contributing to the suppression
of the splitting (see the triangles in Fig. 2). In first-order
perturbation theory no paramagnetic effect is induced by
the field on anyLx=0 state, such as thef0,1

e sr d that we
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are presently considering. However, the mixing with
higher states implies, already at the second-order level, a
paramagnetic contribution(van Vleck paramagnetism16)
DE=−seBi /2m* cd2onuk0uLxunlu2/ sen−e0d. This expression
provides an intuitive understanding of the above behaviors.
In fact, due to the system symmetries and to the energy split-
tings at the denominator, the main contributions toDE of the
u0l= um=0,Az= +1l and u1l= u0,−1l states are negative and,
respectively, proportional to uk0, +1uLxu±1,−1lu2/ s"vxy

+DBABd and uk0,−1uLxu±1, +1lu2/ s"vxy−DBABd, the latter be-
ing systematically larger than the former(the two matrix
elements at the numerator are identical). The above expres-
sions also suggest that a strong in-plane confinement(i.e., a
large "vxy) hinders the field-induced suppression ofDBAB.
The effect of the field on the hole states(not shown) is re-
duced in magnitude, but qualitatively the same as the one
discussed for the electrons.

In order to verify possible effects of the barrier finiteness,
as well as the robustness of our findings with respect to the
molecule’s composition profile, we have performed further
calculations for Gaussian QDs:17

Vxsr d = V0
xH1 − o

i=1

2

expF−
sx2 + y2d

2lxy
2 −

sz− z0,id2

2lz
2 GJ ,

s16d

whereV0
x=e,h are the electron and hole band-offsets, respec-

tively. The results, shown in Ref. 19, show no qualitative
differences with respect to the ones discussed hereafter.
This is also due to the fact that intradot excitations in
the growth direction are not involved in the few-particle
states of our present concern(the B and AB states arise
from the hybridization of the single-dot ground-state wave
functions alongz): the carriers are, therefore, rather unsensi-
tive to the detailed shape ofVszd away from the local
minima.

B. Neutral and charged excitons

Due to the 3D confinement of the carriers, the few-
particle states in single- and coupled-QDs are strongly af-
fected by the Coulomb interactions, which typically induce
large energy renormalizations, as compared to heterostruc-
tures of higher dimensionality. We start by considering the
exciton binding energy, which is defined asDX;ee+eh−EX,
where e0

e, e0
h, and EX are the electron, hole, and exciton

ground-state energies, respectively. As shown in Fig. 3
(squares), the exciton binding energy monothonically in-
creases as a function of the in-plane magnetic fieldBi. This
behavior is due to the combination of different effects: The
wave function squeezing, resulting in an enhanced modulus
of the attractive Coulomb matrix element,uV1111

eh u; an increase
of e0

e+e0
h which is larger than that ofEsp=kXuHspuXl, due to

the presence of a decreasingAB componentuf1
el ^ uf1

hl in
the latter; the suppression of the energy splittingDBAB,
which favors the interdot correlation and thus further
enhances the Coulomb interaction between the carriers, as
explained in greater detail below. Figure 4(b) shows thez
dependence of the electron-hole pair-correlation function for
the exciton ground stateuXl, ḡeh

X sx=0,y=0,zd: ḡeh
X is strongly

peaked aroundz=0 already at Bi=0 (solid line), and
this feature is further enhanced at high magnetic field
(Bi=15 T, dotted line); correspondingly, the interdot correla-
tion between the electron and the hole suppresses the prob-
ability of finding the two carriers in different dots. The spa-
tial correlation in thez direction reduces the Coulomb energy
Ec=kXuHcuXl at the cost of occupying theAB orbitals: There-
fore, the correlated exciton stateuXl.uf0

el ^ uf0
hl+ uf1

el
^ uf1

hl is favored by the magnetic-field induced suppression
of DBAB.

The charging of the exciton, be it negativesX−d or posi-
tive sX+d, strongly affects its magnetic-field dependence, for
it introduces a competition between the attractive and the
repulsive Coulomb interactions, thus widening the variety of

FIG. 2. Expectation values of the field-dependent terms in the
single-electron Hamiltonian of Eq.(1): The solid (dashed) lines
correspond to theB sABd states; circles, squares, and triangles stand
for the diamagnetic part, the paramagnetic one, and the overall ex-
pectation value, respectively.

FIG. 3. The binding energies of the neutralsXd and charged(X−

and X+) excitons, and of the biexcitonB as a function of the in-
plane magnetic fieldBi are denoted by squares, circles, upward- and
downward-oriented triangles, respectively.
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the carrier localizations and correlations that can in principle
minimize the overall energy. In analogy to what has been
done for the neutral exciton, we define forX+s−d the binding
energy

DX+s−d ; e0
hsed + EX − EX+s−d, s17d

where EX+s−d is the energy of the positive(negative)-trion
ground state. We prefer the above definition to, e.g.,
DX+s−d8 ;2e0

hsed+e0
eshd−EX+s−d, for it provides a more intuitive

understanding of the effects produced on the exciton by the
addition of an extra hole(electron); besides, unlikeDX±8 , DX±

is directly accessible from an experimental point of view,
for it corresponds to the difference between the recombina-
tion energies of the neutral and of the charged excitons,
"vX−"vX+s−d=EX−fEX+s−d−e0

hsedg. As shown in Fig. 3
(circles), DX− is always positive, and weakly increases with
increasingBi. The interpretation for this behavior is provided
by the electron-hole and electron-electron pair-correlation
functions plotted in Figs. 4(c) and 4(e), respectively. The
increased interdot correlation resulting from the application
of the magnetic field(dotted lines) favors the carrier local-
ization, whereas the balance between the attractive and re-
pulsive interactions induces the carriers to localize in a same
dot: This is shown by the disappearence of the side peaks in

both ḡeh
X−

and ḡee
X−

. The exciton and the additional electron,
therefore, form a bound system.

The binding energyDX+ of the positively charged exciton,
instead, decreases with increasingBi (see Fig. 3). Corre-
spondingly, the carriers tend to minimize the Coulomb repul-
sion by avoiding a double occupation of each dot[Fig. 4(d)],
rather than maximizing the attractive interaction; the electron
is delocalized over the whole molecule and symmetrically
distributed between the two dots[Fig. 4(a)]. Such striking
difference betweenX− andX+ can be traced back to the fact

that hole wave functions are more strongly confined than the
electron ones:18 The extra hole is, therefore, more strongly
repealed by the other hole than it is attracted by the electron,
and this prevents it from forming a bound state with the
exciton. The comparison between the solid and the dotted
lines in Figs. 4(a) and 4(d) actually shows that the field does
not induce meaningful changes in the properties ofX+: In
fact, the energetic cost of the hole-hole correlation, namely
DBAB

h , is already small enough forBi=0; besides,DBAB
e does

not play any meaningful role in the positively charged-
exciton behavior, being the electron-hole correlation negli-
gible even in the high-field regime[Fig. 4(a)]. Being the
positively charged exciton relatively insensitive to the field,
the decreasing trend ofDX+ as a function ofBi can be essen-
tially traced back to the large diamagnetic shift affecting the
“reference” exciton energyEX.

Such qualitative differences in the magnetic-field depen-
dence of the binding energiesDX, DX+, and DX− recall the
ones that occur in their dependence on the interdot
distance,10 thus suggesting the analogous role played in this
respect by the physical quantitiesBi andd. In particular, the
results from the interplay between the interdot tunneling, the
in-plane field, and intradot Coulomb interactions and, there-
fore, provide a clear fingerprint of both the coherent interdot
coupling and of the exciton charging.

C. Biexcitons

In analogy to what has been done for the charged exci-
tons, we define the biexciton binding energy as

DB ; 2EX − EB, s18d

which quantifies the contribution of the exciton-exciton in-
teraction toEB. In fact, in the absence of such Coulomb
interaction, the multiexciton states would follow anaufbau
logic, and progressively occupy exciton states of incresing
energy: This justifies the use of 2EX as a reference for the
biexciton energy. The correctness of the noninteracting pic-

ture can be quantified byukBuÎX↑
† ÎX↓

† u0lu, where the creation of
an optically active excitonuXl=oa=1

ne ob=1
nh cab

X ufa
el ^ ufb

hl (to-
tal angular momentumM = ±1) is obtained by applying to

the vacuum stateÎX↑s↓d
† =oa,bcab

X ĉe,a↓s↑d
† ĉh,b↑s↓d

† , and ĉe,a↑s↓d
†

sĉh,a↑s↓d
† d creates an electron(hole) with sz= ±1/2s jz

= ±3/2d. As discussed in more detail in the following, this
picture fails in the case when the higher-order correlations
set in.

The dependence of the biexciton-binding energy onBi is
plotted in Fig. 3(downward-oriented triangles). Unlike the
neutral- and charged-excitons binding energies,DB does not
monotonically depend on the field: In fact, a minimum is
seen to occur atBi ,8 T. The two trends on the low- and
high-field sides of the minimum correspond to different
kinds of carrier correlations characterizing the biexciton
ground state, as shown in Fig. 5. AtBi=0 (solid lines) the
interdot correlation mainly occurs between identical carriers
and minimizes the repulsive contributions to the overall Cou-
lomb energykBuHcuBl. The double-occupation probability is
suppressed for holes[Fig. 5(a)] and reduced for electrons

FIG. 4. Projection alongz of the pair-correlation functions,
ḡxx8s0,0,zd, of the neutral and charged excitons, for two selected
values of the in-plane magnetic field, namelyBi=0 T and
Bi=15 T (solid and dotted lines, respectively). In detail, In panels
(a)–(c) x=e andx8=h, whereasx=x8=h in (d) andx=x8=e in (e);
panels(a) and (d) refer toX+, (c) and (e) to X− and (b) to X.
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[Fig. 5(c)], the asymmetry between the two carriers arising
from the different values of the energy splittingDBAB

e and
DBAB

h ; electrons and holes, instead, are essentially uncorre-
lated[Fig. 5(b)] with each other. Correspondingly, the domi-
nant configurations in the biexciton state vectoruBl are
uf0

e,f0
el ^ uf0

h,f0
hl and uf1

e,f1
el ^ uf1

h,f1
hl. The application of

the in-plane field drastically changes the correlation proper-
ties of uBl. As shown by the dotted lines in Figs. 5(a)–5(c),
for Bi=15 T all the pair-correlation functions become
strongly peaked aroundz=0, i.e., all the carriers tend to lo-
calize in the same dot and the two excitons do form a bound
state.

A closer inspection at the first excited biexciton states
uB1−3l shows how the above transition corresponds to the
occurence of anticrossings(crossings) between quantum
states with identical(different) symmetries. In Fig. 6 we
plot the dependence onBi of kBiuHspuBil [Fig. 6(d)] and
of the different Coulomb contributionskBiuVxx8uBil, with
i =0,1,2,3 andxx8=eh,ee,hh [Figs. 6(a)–6(c), respec-
tively; hereafteruB0l denotes the biexciton ground state]. All
four states are characterized by an even parity andSe=0; all
of them but B1 also haveSh=0. In agreement with the
Wigner-von Neumann no-crossing rule, the statesuB0l and
uB3l, which share the same quantum numbers, anticross at

Bi ,8 T; uB1l and uB2l, instead, cross, for a very close value
of Bi. Correspondingly, the states 0–3 and 1–2 swap the re-
spective values of the different energetic contributions: In
particular, the increases(decreases) of the ukBiuVxx8uBilu oc-
curs by localization of the corresponding carriers in the same
(different) QD. This behavior qualitatively resembles the one
discussed in Ref. 20, where the physical parameter that tunes
the coupling regime is the width of the interdot barrier, and
the profile of the confinement potential in the growth direc-
tion is given by a double quantum well. Similar results were
also obtained for Gaussian QDs,19 thus demonstrating the
robustness of above behaviors with respect to the details of
the confinement potential.

D. Optical properties

As a final step, we consider the magnetic-field depen-
dence of the artificial-molecule optical response. In particu-
lar, the luminescence spectra at low temperatures are domi-
nated by the emission from the ground states of the different
electron-hole complexes. In Fig. 7(a) we show the
photon energies corresponding to similar transitions, namely
uXl→ u0l, uX+l→ uf0

hl and uX−l→ uf0
el, where u0l is the

vacuum state. The diamagnetic shift, which characterizes all
three transitions, is enhanced upon positive charging: Such
increased energy of the recombining electron-hole pair, as
compared to the other two cases, can be explained in terms

FIG. 5. Projection alongz of the hole-hole[panel(a)], electron-
hole (b), and electron-electron(c) pair-correlation functions for the
biexciton ground stateuBl, for Bi=0 T and Bi=15 T (solid and
dotted lines, respectively).

FIG. 6. Average values of the Coulomb termskBiuVxx8uBil [pan-
els ((a)–(c) correspond toxx8=eh,ee,hh] and ofkBiuHspuBil [panel
(d)] for the biexciton ground and first excited-statesuBil; the solid
and dotted gray(black) lines correspond to the statesuB0l and uB1l
(uB3l and uB2l), respectively.

FIG. 7. Optical transitions as a function of the magnetic field
Bi. (a) Emission energies from the groundstates of the neutral
and charged excitonsX, X+, andX− (dotted, dashed, and solid lines,
respectively). (b) Emission energies from the biexciton states
uB0l (squares) and uB3l (downwards-oriented triangles): The two
lines anticross atBi ,8 T. Inset, crossing between the lines corre-
sponding to the biexciton statesuB1l (upwards-oriented triangles)
and uB2l (circles). (c) Squared moduli of the amplitudesAi→f;
the initial states correspond touBil, with i =0,1,2,3, and the same
conventions as above for the symbols; the final states are the
exciton ground-(decay fromuB0l and uB3l) and first excited-states
( uB1l and uB2l).
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of the already mentioned rigidity ofX+, whose interdot cor-
relation properties are unaffected byBi.

The occurence of transitions between different correlation
regimes as a function of the magnetic field shows up in the
dependence onBi of the biexciton emission energy. In par-
ticular, the statesuB0l and uB3l share the even parity, as well
as the electron and hole total spins(Se=0, Sh=0); besides,
the final state maximizing the oscillator strengthAi→f is in
both cases the exciton ground stateuXl. The anticrossing be-
tween the energy levelsEB0

sBid andEB3
sBid (not shown here)

is reflected by that involving the respective optical-transition
energies,EB0

−EX and EB3
−EX [see Fig. 7(b)]. At the anti-

crossing, theuB0l→ uXl picks up the oscillator strength of
uB3l→ uXl, as shown in panel(c). In the same range of
magnetic-field values, an analogous transition occurs be-
tween the two first excited biexciton states,uB1l and uB2l,
both characterized by an odd parity and bySe=0, but with
different hole spin(Sh=1 andSh=0, respectively, atBi=0).
In Fig. 7(b) we show the photon energies corresponding to
the uBi=1,2l→ uX1l, whereuX1l, the exciton first excited state,
maximizesAi→f for both biexcitons: due to the different
symmetries of the corresponding eigenstates, the curves
EB1

sBid andEB2
sBid are allowed to cross, and so do the dis-

played photon energies. The field dependence of the oscilla-
tor strength is strikingly different with respect to the previous
case: In fact, as for the average values of the Coulomb and
kinetic terms in the Hamiltonian, the two optical transitions
simply swap the respective values ofuAi→fu2.

IV. CONCLUSIONS

To summarize, we have investigated the dependence on
the in-plane magnetic fieldBi of the exciton and biexciton
states in two vertically coupled QDs. The main effect of the
field is that of reducing the energy splittingDBAB between
the B and AB states, without suppressing the coherent
coupling of the dots, and thus enhancing the interdot corre-
lations between the carriers. The neutral-sXd and charged-
exciton (X+, X−) binding energies monotonically depend on
Bi; however, the sign of such dependence, as well as the
bound or unbound nature of the charged complex, critically
depends on the charging. The biexciton, instead, undergoes a
transition between different quantum states and correlation
regimes as function ofBi; the two excitons correspondingly
pass from an unbound(low field) to a bound(high field)
configuration. Such transition shows up in the optical re-
sponse of the system, through the occurence of an anticross-
ing between the optical-transitions energies involving the
biexciton ground state.
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