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Growing evidence suggests that cochlear stressors as noise exposure and aging can induce
homeostatic/maladaptive changes in the central auditory system from the brainstem to the
cortex. Studies centered on such changes have revealed several mechanisms that oper-
ate in the context of sensory disruption after insult (noise trauma, drug-, or age-related
injury).The oxidative stress is central to current theories of induced sensory-neural hearing
loss and aging, and interventions to attenuate the hearing loss are based on antioxidant
agent. The present review addresses the recent literature on the alterations in hair cells
and spiral ganglion neurons due to noise-induced oxidative stress in the cochlea, as well
on the impact of cochlear damage on the auditory cortex neurons. The emerging image
emphasizes that noise-induced deafferentation and upward spread of cochlear damage
is associated with the altered dendritic architecture of auditory pyramidal neurons. The
cortical modifications may be reversed by treatment with antioxidants counteracting the
cochlear redox imbalance. These findings open new therapeutic approaches to treat the
functional consequences of the cortical reorganization following cochlear damage.
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INTRODUCTION: CHALLENGES FOR THE INVESTIGATION OF
THE RELATION BETWEEN INNER EAR INJURY AND
AUDITORY CORTEX PLASTICITY
Sensory-neural hearing loss is a disorder surprisingly frequent in
the general population (Nelson et al., 2005) affecting severely the
quality of life as reported by several assessments (Seidman and
Standring, 2010). Hearing loss research provided evidence on two
major causal insults, aging and noise trauma, and on a common
predominant mechanism of damage affecting the organ of corti:
the redox status imbalance. Mitochondrial production of reac-
tive oxygen species (ROS) is indeed central to the free radical
theory of aging (Lenaz, 2012; Orr et al., 2013). This theory has
been implicated in the pathogenesis of virtually all age-associated
diseases as well as in noise-induced hearing loss (NIHL), the
second most common sensory-neural hearing deficit after age-
related hearing loss (presbycusis) (Van Eyken et al., 2007; Someya
et al., 2009; Fetoni et al., 2011). In both hearing pathologies, the
increase of hearing threshold of about 40–50 dB affects predom-
inantly the high-frequency region and is frequently associated to
distressful and debilitating phantom sounds (Heffner and Har-
rington, 2002; Eggermont and Roberts, 2004; Weisz et al., 2006;
Eggermont, 2008; Roberts et al., 2010). The current state of pres-
bycusis and NIHL research suggests that sensory disruption due
to damage of the organ of corti may trigger central mechanisms
of homeostatic/maladaptive plasticity (Rauschecker, 1999; Syka,
2002; Caspary et al., 2008; Wang et al., 2011; Yang et al., 2011).
Consistent with theories of homeostatic plasticity many studies
have reported changes in excitatory, inhibitory, and neuromod-
ulatory networks along the central auditory pathway (Liberman

and Kiang, 1978; Abbott et al., 1999; Milbrandt et al., 2000; Salvi
et al., 2000; Richardson et al., 2012; Engineer et al., 2013). Indeed,
research focused selectively either on the analysis of cochlear dam-
age within the organ of corti and its mechanisms or the functional
adaptive changes of central and cortical networks. Despite the
plethora of data achieved in recent years, a cohesive physiological
framework underlying presbycusis and NIHL generation remains
elusive inasmuch the relation between cochlear injury and cor-
tical plasticity has been addressed only marginally. To this end,
the current review will examine the convergence of factors related
to auditory insults from a bottom-up perspective, coupling the
acoustically- or aging-induced functional changes at peripheral
level [e.g., hearing receptor and spiral ganglion neuron (SGN)
function] with the central changes at the level of the pyramidal
neurons in the auditory cortices. To gain insights into the rela-
tionship between cochlear damage and cortical rearrangement,
this review will first address damage-induced ROS imbalance in
the cochlea and the effect of antioxidant supplementation, and
then the adaptive/maladaptive cortical rearrangement (diagram
in Figure 1A).

OXIDATIVE STRESS AND REDOX BALANCE IN THE HAIR
CELLS: THE ANTIOXIDANT PROTECTION
The loss of hair cells (HCs) induced by acoustic overexposure man-
ifests as extensive outer hair cell (OHC) death, mainly the basally
located OHCs, and frequency-delimited loss of inner hair cells
(IHCs) scaling with the trauma severity (Spongr et al., 1992). This
susceptibility to trauma appears to be conserved in certain models
of ototoxicity, such as the exposure to aminoglycoside antibiotics
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Fetoni et al. Cortical modifications following cochlear damage

FIGURE 1 | In the rat, repeated noise exposure causes hearing loss
and cochlear oxidative imbalance that is reduced by antioxidant
treatment. The diagram in (A) is a schematic representation of the effect
of antioxidant supplementation on the upward spread of noise-induced
cochlear damage; reactive oxygen species (ROS) over production in
cochlear structures induces hair cell dysfunction, spiral ganglion neurons
(SGNs) loss and alterations in cortical pyramidal neurons. (A1) The hearing
loss has been evaluated by ABR threshold shift values (±SEM). Repeated
noise exposure (100 dB, 10 kHz, 60 min/day for 10 consecutive days)
induces threshold shift of ~40–45 dB for all frequencies tested with a peak
between 16 and 24 kHz. NIHL is ameliorated by antioxidant treatment
(Qter, 100 mg/kg × 10 days): the threshold shifts is ~10–15 dB at the end of
noise sessions. ***p < 0.0001. (B) The quantitative assessment of HC
survival has been determined by Rhodamine–Phalloidin (Rh–Ph) staining of
HC apical pole 60 days after noise exposure. In control, typical distribution

in three rows of OHCs and one row of inner hair cells (IHCs) is shown
[indicated by asterisks in (B1)], in noise exposed animals HC loss is
observed mainly in the middle and basal turn [indicated by asterisks in
(B2)]. The amount of HC disappearance is significantly decreased by
antioxidant treatment (B3). (C) In order to demonstrate that the CoQ analog
is protective against oxidative stress in the cochlea, the quantification of
quinone levels (CoQ9) has been performed by HPLC analysis at the end of
Qter treatment. Interestingly, rats treated with Qter show higher quinone
levels than in Ctrl and noise groups. The cochlear oxidative damage after
noise exposure at day 11 has been detected using superoxide (D) and lipid
peroxidation (E) markers. (D) Noise-induced superoxide production in the
OHCs [indicated by arrow-heads in (D2,D4)] and SGNs (D3,D5) is reduced
by Qter treatment. Similarly, Qter treatment significantly decreases the
expression of 4-HNE mainly in OHCs [indicated by arrow-heads in (E2,E4)]
and SGNs (E3,E5). Data are taken from Fetoni et al. (2013).

(Forge, 1985), or to platinum-derived cancer treatment drugs (Yor-
gason et al., 2006). Interestingly, there is an equivalency between
loss developed following noise trauma and the loss acquired dur-
ing aging, as in sensory presbycusis (Schuknecht, 1964; Schuknecht
and Gacek, 1993; Ohlemiller, 2004). Ultimately, in models of sen-
sory presbycusis and NIHL, the cochlear injury seems to converge
upon auditory neuropathy (Stamataki et al., 2006; Sergeyenko
et al., 2013; Gold and Bajo, 2014) and a ROS-dependent mech-
anism of damage (Henderson et al., 2006; Yamasoba et al.,
2013).

Reactive oxygen species are formed as byproducts of mitochon-
drial respiration and examples of oxidizing reactive species are
the superoxide anion radical (O2), the hydroxyl radical (OH),
and hydrogen peroxide (H2O2) (Bast and Haenen, 2013). Most
research on the role of ROS in aging and NIHL has focused on two
areas: defining the sites and mechanisms of ROS production and
the resulting damage, and developing broad-acting antioxidants

to decrease the damage caused by ROS (Someya et al., 2009; Orr
et al., 2013). Considerable progress has been made in defining
sites of production within the mitochondria and it is generally
accepted that complex I and complex III have high capacities
for production of superoxide/H2O2 and they are the sites most
relevant to disease (Brand et al., 2013). Under basic metabolic
conditions the intrinsic mitochondrial and cytosolic antioxidant
machinery maintains redox homeostasis, the steady state between
oxidative and reductive forces. However, if ROS are being produced
in excess they create oxidative stress that affects various organelles
and pathways in the cell, leading to apoptosis, or other forms of
cell death, damaging mitochondria themselves and energy metab-
olism (Finkel, 2012; Böttger and Schacht, 2013). Our data on NIHL
and ototoxicity models provide evidence on oxidative stress in
the cochlea. Namely, enhanced superoxide production and lipid
peroxidation in HCs and SGNs demonstrate the oxidative sta-
tus after noise exposure and cisplatin-induced ototoxicity (Fetoni
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Fetoni et al. Cortical modifications following cochlear damage

et al., 2013, 2014). Among the biomarkers of lipid peroxidation,
4-hydroxy-2-nonenal (4-HNE) is one of the more sensitive and
widely used in vitro and in vivo experimental models (Fetoni et al.,
2010, 2013). A strong immunoreactivity for 4-HNE is detected in
almost all OHCs in the damaged area in the first 24 h after the
acoustic trauma in guinea pigs (Maulucci et al., 2014) and after
cisplatin administration in rodents (Fetoni et al., 2014). Interest-
ingly, an increasing level of free radical-induced lipid peroxidation
is revealed in OHCs and SGNs in the first 3 days after exoge-
nous insults; peroxidation then decreases in the following 7 days
indicating that an early “window” for a successful therapeutic
approach against exogenous factors occurs (Fetoni et al., 2010,
2013, 2014). During this period, several endogenous antioxidant
pathways, which can be potentiated by exogenous supplementa-
tion, are activated to prevent the onset of HC damage. Vascular
endothelial growth factor (VEGF), once regarded as an angio-
genic factor implicated in antioxidant defense, is up-regulated at
1 and 7 days following intense noise exposure in the organ of
corti. VEGF up-regulation can be temporally and spatially cor-
related to spontaneous recovery of auditory function that occurs
in the first 7 post-damage days (Picciotti et al., 2006; Fetoni et al.,
2009a). VEGF expression is also significantly reduced in aged mice
(Picciotti et al., 2004). These findings suggest a possible interde-
pendent relationship between aging and acoustic trauma on one
hand, and oxidative stress mechanisms on the other hand, with
potentially important therapeutic implications. Among the many
intracellular pathways involved in the adaptive stress response, a
relevant role is played by the inducible isoform of heme oxygenase
(HO-1), the microsomal enzyme deputed to heme catabolism hav-
ing antioxidant properties capable of scavenging peroxyl radicals
and inhibiting lipid peroxidation (Barone et al., 2009). Several
strategies to ameliorate redox status balance have been focused on
antioxidant supplementation and there has been extensive research
into the discovery of natural and newly designed antioxidants (Le
Prell et al., 2007, 2011; Fetoni et al., 2010, 2014). Remarkably in
the guinea-pig cochleae, the neuroprotective effect of the antiox-
idant Ferulic acid, when given 1 day before and for 3 days after
noise exposure, is functionally related not only to its scavenging
ability but also to the up-regulation of HO-1. These results fit the
idea that antioxidants achieve their best cytoprotective capacity
if given before and soon after the stressor. Also, in the model of
cisplatin-induced oxidative stress HO-1 level is enhanced as an
early endogenous, although insufficient, antioxidant response and
this pathway is potentiated by the administration of the dietary
antioxidant curcumin (Fetoni et al., 2014). Although the issue on
the different mechanisms of cochlear oxidative stress/ROS gener-
ation in NIHL, ototoxicity and sensory presbycusis is not resolved,
common to these hearing pathologies is mitochondrial dysfunc-
tion (Böttger and Schacht, 2013). The antioxidant ability to donate
electrons of coenzyme Q10 (CoQ10) in targeting mitochondrial
dysfunction can be considered a promising approach inasmuch
CoQ10 functions as an electron carrier from the protein com-
plex I and II to complex III (Crane, 2001; Lenaz et al., 2007).
As energy carrier, the CoQ10 factor continuously goes through
oxidation–reduction cycle. In its reduced form, the CoQ10 holds
electrons rather loosely, so CoQ10 will quite easily give up one
or both electrons and, thus, act as antioxidant. CoQ10 inhibits

lipid peroxidation by preventing the production of lipid peroxyl
radicals, reduces the initial perferryl radical, which prevents prop-
agation of lipid peroxidation, protects not only lipids but also
proteins from oxidation. In addition, the reduced form of CoQ10

effectively regenerates vitamin E from the α-tocopheroxyl rad-
ical (Sohal and Forster, 2007). Considering that the efficacy of
antioxidants is best tested in terms of their ability to maintain
homeostasis CoQ10 analogs have been tested in NIHL. The syn-
thetic analog of CoQ10, idebenone, significantly prevents NIHL
when administered in the peritraumatic period decreasing the
apoptotic cascade activation and then avoiding HC loss (Sergi
et al., 2006; Fetoni et al., 2008). Its efficacy seems to depend on the
ability to intercept free radicals in both aqueous phases and lipid–
water interfaces. On this basis, the protective role of CoQ10 against
NIHL has been analyzed by comparing the efficacy of the native
lipophilic CoQ10 molecule with that of a multi-composite formu-
lation of CoQ10 with high water solubility and oral bioavailability,
CoQ10 Terclatrate (Qter). The water soluble molecule is more effec-
tive as compared to the native CoQ10 in decreasing apoptosis as
shown by the reduced expression of active caspase 3 and thus in
improving hearing. The obtained results confirm that solubility of
Qter improves the ability of CoQ10 in preventing oxidative injuries
that result from mitochondrial dysfunction (Fetoni et al., 2009b,
2012, 2013). In fact, the systemic administration of Qter decreases
superoxide production and 4-HNE expression in HCs and SGNs
(Figure 1). Interestingly, reduced oxidative stress is consistent with
the increased levels of the endogenous quinones (i.e., CoQ9, the
major form expressed in rats) after the administration of Qter

indicating that the exogenous quinone can exert a protective effect
on animal tissues. In fact, in the NoiseQter group, CoQ9 levels
decrease at the end of treatment compared with the control Qter

group, demonstrating that the exogenous quinone is used as scav-
enger during noise exposure to reduce the oxidative imbalance.
This scavenging would thus prevent the functional and morpho-
logical cochlear damage (Figures 1 and 2A,B), the upward spread
of the cochlear damage and the deafferentation consequences in
the auditory cortex (Figure 1A).

INSULT-MEDIATED ADAPTIVE/MALADAPTIVE PLASTICITY IN
THE AUDITORY CORTEX
Noise-induced hearing loss, ototoxicity, or age-induced damage
to the peripheral hearing organ causes primarily alteration of the
firing rates in the auditory nerve (Kraus et al., 2011), and compen-
satory changes at various levels of the central auditory pathway (Jin
et al., 2005; Jin and Godfrey, 2006; Meidinger et al., 2006; Wang
et al., 2006; Kraus et al., 2009; Kujawa and Liberman, 2009). The
consequences of acoustic trauma have been investigated mainly
through electrophysiological and neurochemical analyses, whereas
morphological data in the central acoustic system are still scant
(Bose et al., 2010; Gröschel et al., 2010). Nevertheless, following
noise-induced acoustic trauma, decreased spine density paral-
leled by an increased dendritic length has been observed in the
pyramidal neurons of auditory cortical areas (Figure 2) (Fetoni
et al., 2013). Namely, pyramidal neurons belonging to layer II–III
(L 2/3) and V–VI (L 5/6) of auditory cortices have been ana-
lyzed by using the Golgi–Cox technique from tissue collected
two months after noise injury (Figure 2C). In both cortical layers
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Fetoni et al. Cortical modifications following cochlear damage

FIGURE 2 | Cortical morphological modifications induced by
noise-induced cochlear damage and peripheral deafferentation are
ameliorated by antioxidant treatment. (A) Repeated noise exposure
induces SGN degeneration, soma appear smaller, their density is reduced,
and fibers are thinner (A1) compared with controls (A). Qter administration
preserves SGNs and fibers (A2). (B) The graph shows SGN viability presented
as number of cells per square millimeters, ***p < 0.0001. (C–F) Auditory
cortex pyramidal neurons belonging to L 2/3 and L 5/6 have been analyzed
using Golgi–Cox technique from tissue collected at day 60 after noise
exposure. (C) Golgi–Cox staining and Camera Lucida drawings of
representative pyramidal neurons belonging to L 2/3 and L 5/6 of auditory
cortices. (D–E) Histograms show the effects of noise exposure and

antioxidant treatment (Qter) on dendritic spine density and length of L 2/3
(above) and L 5/6 (below) pyramidal neurons. Vertical bars indicate SEM,
*p < 0.05, **p < 0.001, ***p < 0.0001. (D) The acoustic trauma significantly
decreases spine density in the apical and basal dendrites of both cortical
layers. Qter treatment rescues control values of spine density for both apical
and basal dendrites in L 2/3 but not in L 5/6. (E) In both layers, the acoustic
trauma significantly increases neuronal length both in apical and basal
dendrites. Qter treatment does not modify the dendritic length enhanced by
the acoustic trauma in the apical and basal arborizations of L 2/3 and L 5/6
pyramidal neurons. (F) Photomicrographs visualize the spines of apical
dendritic segments of pyramidal neurons belonging to L 2/3 and L 5/6 of the
auditory cortex. Data are adapted from Fetoni et al. (2013).

and both apical and basal dendrites, the acoustic trauma signifi-
cantly decreased spine density (Figure 2D) and increased dendritic
length (Figure 2E). The distance from the soma of maximal spine

concentration remained unaltered in the arborizations of L 2/3
while it was distally shifted in the apical and basal dendrites of L
5/6 reducing the efficacy of synapses on neuronal output (Fetoni
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et al., 2013). In the absence of dendrite shrinkage, spine loss
may be explained by excessive synaptic pruning attributable to
enhanced synaptic competition. Hence, the spine loss that follows
deafferentation may be caused by activity-dependent remodeling
of neuronal connectivity and it could be a “trophic” response,
whereby a diminished input cannot sustain a large number of exci-
tatory connections. Alternatively, the deafferented cortical neuron
could compensate for the reduced afferent drive by sensing global
levels of activity and operating a homeostatic synaptic scaling
(Turrigiano, 2008, 2012; Whitt et al., 2014). If so, the decrease in
spine number could result in an up-regulated excitatory signaling
and preserve relative synaptic efficacy. Literature on homeosta-
tic plasticity (Caspary et al., 2008; Richardson et al., 2012; Gold
and Bajo, 2014) describes how in response to changes in chronic
neuronal activity, i.e., deafferentation, neural systems undergo
compensatory changes in synaptic activity to stay within a rel-
atively narrow operating range of the original neuronal activity
(Turrigiano, 1999, 2007; Rich and Wenner, 2007). A number of
plasticity studies have focused on the potential significance of the
balance between excitation and inhibition to explain the adap-
tive and maladaptive homeostatic plasticity of cortical tonotopic
map reorganization and tinnitus, respectively (Eggermont and
Roberts, 2004; Roberts et al., 2010; Pienkowski and Eggermont,
2011; Wang et al., 2011). The cellular compensatory mechanisms
involve the regulation of inhibitory and excitatory neurotrans-
mission, since changes in one system produce reactive changes in
the other one (Turrigiano, 2012). In response to increased neu-
ronal activity, inhibitory and excitatory synaptic strengths are
multiplicatively scaled up and down, respectively (Peng et al.,
2010; Rannals and Kapur, 2011), to restore neuronal firing rate
to normal levels. Indeed, dendrites and their spines are the main
neuronal targets of plasticity (Feldman, 2012; Fortin et al., 2012;
De Bartolo et al., 2014; Sala and Segal, 2014). Dendritic arbors and
spines are then highly dynamic structures branching and retract-
ing in response to the information they receive, so that dendritic
length and spine number are related to the degree of connectivity
and the complexity of information processing (McAllister, 2000).
They provide the morphological substrate for lesion-induced and
context-dependent plastic events (Kulkarni and Firestein, 2012).

Interestingly, systemic treatment with the antioxidant CoQ10

analog Qter in the rat NIHL model not only reduced the oxida-
tive stress and cochlear damage but also prevented the alteration
of the pyramidal dendritic pattern of the auditory cortex in a
layer-selective mode (Figures 2D–F). Namely, the spine densities
for both apical and basal dendrites were rescued to control val-
ues (Figure 2D) without modifying its distance from soma in L
2/3, but not in L 5/6 (Fetoni et al., 2013). However, the antiox-
idant treatment did not modify the dendritic length enhanced
by the acoustic trauma in the apical and basal arborizations of
L 2/3 and 5/6 pyramidal neurons (Figure 2E). As the other sen-
sory cortices, the auditory cortex shows dense and well-developed
L2/3, mainly involved in cortico-cortical circuits, and relatively
sparse and reduced L5/6 (Linden and Schreiner, 2003; Paxinos and
Watson, 2007). Thus, the neuronal rearrangement of the auditory
cortex appears to engage mainly the cortico-cortical circuits and
L2/3 homeostatic plastic changes are the substrate for cortical plas-
ticity, as reported in other sensory cortices (Kotak et al., 2005; De

Bartolo et al., 2009; Gelfo et al., 2009; Whitt et al., 2014). Overall,
various forms of plasticity, including synaptic scaling, plasticity
of intrinsic excitability, and changes in sensory-evoked inhibition
and excitation–inhibition ratio, cooperate to modify the function
of cortical circuits (Li et al., 2014; Whitt et al., 2014). This rich
repertoire of synapse regulation and plasticity enables cortical cir-
cuits to respond with the greatest flexibility to changes in sensory
input. On one hand, the several forms of homeostatic plasticity
operating on different temporal and spatial scales may guarantee
the apt compensatory responses to a wide range of sensory pertur-
bations. Interestingly, in both juvenile and adult mammals,hearing
loss restricted to a part of the audible frequency range can lead
to a reorganization of cortical tonotopic maps (Pienkowski and
Eggermont, 2011). Thus, the cortical modifications after NIHL, as
illustrated in Figure 2, could be the structural basis of such a func-
tional phenomenon for which within a few weeks from the onset
of severe but restricted hearing loss, the cortical region related
to the dysfunctional cochlear part becomes tuned to the sound
frequencies, which stimulate the adjacent non-damaged part(s)
(Eggermont and Komiya, 2000; Noreña and Eggermont, 2005).
On the other hand, maladaptive cortical plasticity or impaired
synaptic plasticity might contribute to the excess of plasticity as
reported in focal and generalized form of dystonia (Quartarone
and Pisani, 2011). It can be speculated that a deficit of synaptic
“down-scaling” along with a deficient inhibition may underlie the
excess of plasticity in tinnitus and the increased plasticity in the
auditory cortex and/or multiple levels of the central auditory neu-
raxis can become maladaptive, giving rise to abnormal sensory
patterns.

CONCLUSION
Mitochondrial production of ROS is implicated in the pathogen-
esis of virtually all age-associated diseases as well as in NIHL.
As shown in the acoustic trauma model, noise exposure induces
oxidative stress damage in the sensory epithelium of the organ of
corti and degeneration of SGNs. The upward spread of cochlear
oxidative damage appears to cause plastic rearrangement in the
pyramidal layers (L 2/3 and L 5/6) of the auditory cortex. Antiox-
idants, such as Qter, Ferulic acid, and Idebenone, reduce the
morphological and functional cochlear damage. The decrease of
the peripheral oxidative imbalance reverses the upward spread of
the cochlear damage and the deafferentation consequences in the
auditory cortex, specifically in the highly plastic L 2/3. The present
data demonstrate the capability of the auditory cortex to remodel
its features in consequence of antioxidant therapy.
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