18,695 research outputs found

    Investigation of upper-surface-blowing nacelle integration at cruise speeds utilizing powered engine simulators

    Get PDF
    Various overwing nacelle designs were investigated on a representative four engine short haul aircraft configuration during a combined analytical and experimental program. Design conditions were M sub o = 0.7 and C sub L = 0.4. All nacelles had D shaped nozzle exits and included a streamline contoured design, a low boattail angle reference configuration, and a high boattail angle powered lift design. Testing was done with the design four engine airplane configuration as well as with only inboard nacelles installed. Turbopowered engine simulators were used to provide realistic representation of nacelle flows. Performance trends are compared for the various nacelle designs. In addition, comparisons are presented between analytical and experimental pressure distributions and between flow through and powered simulator results

    MM Algorithms for Minimizing Nonsmoothly Penalized Objective Functions

    Full text link
    In this paper, we propose a general class of algorithms for optimizing an extensive variety of nonsmoothly penalized objective functions that satisfy certain regularity conditions. The proposed framework utilizes the majorization-minimization (MM) algorithm as its core optimization engine. The resulting algorithms rely on iterated soft-thresholding, implemented componentwise, allowing for fast, stable updating that avoids the need for any high-dimensional matrix inversion. We establish a local convergence theory for this class of algorithms under weaker assumptions than previously considered in the statistical literature. We also demonstrate the exceptional effectiveness of new acceleration methods, originally proposed for the EM algorithm, in this class of problems. Simulation results and a microarray data example are provided to demonstrate the algorithm's capabilities and versatility.Comment: A revised version of this paper has been published in the Electronic Journal of Statistic

    Resource management implications of ERTS-1 data to Ohio

    Get PDF
    Initial experimental analysis of ERTS-1 imagery has demonstrated that remote sensing from space is a means of delineating and inventorying Ohio's strip-mined areas, detecting power plant smoke plumes, and proving the data necessary for periodically compiling land use maps for the entire state. The nature and extent of these problems throughout Ohio, how ERTS data can contribute to their solution, and estimates of the long term significance of these initial findings to overall resource management interests in Ohio are summarized

    Ocean gravity and geoid determination

    Get PDF
    Gravity anomalies have been recovered in the North Atlantic and the Indian Ocean regions. Comparisons of 63 2 deg x 2 deg mean free air gravity anomalies recovered in the North Atlantic area and 24 5 deg x 5 deg mean free air gravity anomalies in the Indian Ocean area with surface gravimetric measurements have shown agreement to + or - 8 mgals for both solutions. Geoids derived from the altimeter solutions are consistent with altimetric sea surface height data to within the precision of the data, about + or - 2 meters

    A study of possible sea state information in the sample and hold gate statistics for the GEOS-3 satellite altimeter

    Get PDF
    The statistical variations in the sample gate outputs of the GEOS-3 satellite altimeter were studied for possible sea state information. After examination of a large number of statistical characteristics of the altimeter waveforms, it was found that the best sea predictor for H-1/3 in the range of 0 to 3 meters was the 75th percentile of sample and hold gate number 11

    Scanamorphos: a map-making software for Herschel and similar scanning bolometer arrays

    Full text link
    Scanamorphos is one of the public softwares available to post-process scan observations performed with the Herschel photometer arrays. This post-processing mainly consists in subtracting the total low-frequency noise (both its thermal and non-thermal components), masking high-frequency artefacts such as cosmic ray hits, and projecting the data onto a map. Although it was developed for Herschel, it is also applicable with minimal adjustment to scan observations made with some other imaging arrays subjected to low-frequency noise, provided they entail sufficient redundancy; it was successfully applied to P-Artemis, an instrument operating on the APEX telescope. Contrary to matrix-inversion softwares and high-pass filters, Scanamorphos does not assume any particular noise model, and does not apply any Fourier-space filtering to the data, but is an empirical tool using purely the redundancy built in the observations -- taking advantage of the fact that each portion of the sky is sampled at multiple times by multiple bolometers. It is an interactive software in the sense that the user is allowed to optionally visualize and control results at each intermediate step, but the processing is fully automated. This paper describes the principles and algorithm of Scanamorphos and presents several examples of application.Comment: This is the final version as accepted by PASP (on July 27, 2013). A copy with much better-quality figures is available on http://www2.iap.fr/users/roussel/herschel
    • …
    corecore