132 research outputs found

    The extraordinary structural evolution of massive galaxies

    Get PDF
    Galaxies have changed drastically over the past 10 billion years. This thesis deals with these changes, focusing on evolution in the structure of very massive galaxies with a range of stellar population properties. The main subjects addressed are the rapid changes in the sizes of old galaxies, the gradients in stellar population content within galaxies, and the predictions from theoretical models regarding these properties.UBL - phd migration 201

    An HI survey of the Bootes Void. II. The Analysis

    Get PDF
    We discuss the results of a VLA HI survey of the Bootes void and compare the distribution and HI properties of the void galaxies to those of galaxies found in a survey of regions of mean cosmic density. The Bootes survey covers 1100 Mpc3^{3}, or \sim 1\% of the volume of the void and consists of 24 cubes of typically 2 Mpc * 2 Mpc * 1280 km/s, centered on optically known galaxies. Sixteen targets were detected in HI; 18 previously uncataloged objects were discovered directly in HI. The control sample consists of 12 cubes centered on IRAS selected galaxies with FIR luminosities similar to those of the Bootes targets and located in regions of 1 to 2 times the cosmic mean density. In addition to the 12 targets 29 companions were detected in HI. We find that the number of galaxies within 1 Mpc of the targets is the same to within a factor of two for void and control samples, and thus that the small scale clustering of galaxies is the same in regions that differ by a factor of \sim 6 in density on larger scales. A dynamical analysis of the galaxies in the void suggests that on scales of a few Mpc the galaxies are gravitationally bound, forming interacting galaxy pairs, loose pairs and loose groups. One group is compact enough to qualify as a Hickson compact group. The galaxies found in the void are mostly late-type, gas rich systems. A careful scrutiny of their HI and optical properties shows them to be very similar to field galaxies of the same morphological type. This, combined with our finding that the small scale clustering of the galaxies in the void is the same as in the field, suggests that it is the near environment that mostly affects the evolution of galaxies.Comment: Latex file of abstract. The postscript version of the complete paper (0.2 Mb in gzipped format) including all the figures can be retrieved from http://www.astro.rug.nl:80/~secr/ To appear in the February 1996 issue of the Astronomical Journa

    The stellar mass structure of massive galaxies from z=0 to z=2.5; surface density profiles and half-mass radii

    Get PDF
    We present stellar mass surface density profiles of a mass-selected sample of 177 galaxies at 0.5 < z < 2.5, obtained using very deep HST optical and near-infrared data over the GOODS-South field, including recent CANDELS data. Accurate stellar mass surface density profiles have been measured for the first time for a complete sample of high-redshift galaxies more massive than 10^10.7 M_sun. The key advantage of this study compared to previous work is that the surface brightness profiles are deconvolved for PSF smoothing, allowing accurate measurements of the structure of the galaxies. The surface brightness profiles account for contributions from complex galaxy structures such as rings and faint outer disks. Mass profiles are derived using radial rest-frame u-g color profiles and a well-established empirical relation between these colors and the stellar mass-to-light ratio. We derive stellar half-mass radii from the mass profiles, and find that these are on average ~25% smaller than rest-frame g band half-light radii. This average size difference of 25% is the same at all redshifts, and does not correlate with stellar mass, specific star formation rate, effective surface density, Sersic index, or galaxy size. Although on average the difference between half-mass size and half-light size is modest, for approximately 10% of massive galaxies this difference is more than a factor two. These extreme galaxies are mostly extended, disk-like systems with large central bulges. These results are robust, but could be impacted if the central dust extinction becomes high. ALMA observations can be used to explore this possibility. These results provide added support for galaxy growth scenarios wherein massive galaxies at these epochs grow by accretion onto their outer regions.Comment: 11 pages, 8 figures, 3 tables, accepted for publication in Ap

    An HI survey of the bootes void; 1, the data

    Get PDF
    We present the results of a neutral hydrogen survey of the Bootes void carried out with the VLA in D-array. The survey covers \sim 1100 Mpc^{3}, about 1\% of the volume of the void as defined by Kirshner \etal 1987. We observed 24 fields, centered on known void galaxies; 16 of these were detected in HI. Eighteen uncataloged companion galaxies were discovered directly in the HI line at distances of 45\sec to 14.5\min from the target galaxies. We also present the results of follow-up optical imaging observations and discovery of one additional Bootes void galaxy, found through spectroscopy of a number of apparent companions to known void members. Our angular resolution is \sim 1\min (45 kpc) \footnote{Throughout this paper, we have assumed {H_{0}} = {\rm 100\,km\,s^{-1}Mpc^{-1}}.}, each field has a size of \sim 1\deg (2.7 Mpc). The detected HI masses range from 8\times 10^{8} to 1\times 10^{10} \msol. Typically our 2\sigma HI column density sensitivity is 2\times 10^{19} {\rm cm^{-2}}. The radio and optical data are analyzed and discussed in the following companion article (Paper~2, Szomoru, van Gorkom, Gregg and Strauss 1996)

    WSRT Ultra-Deep Neutral Hydrogen Imaging of Galaxy Clusters at z=0.2, a Pilot Survey of Abell 963 and Abell 2192

    Full text link
    A pilot study with the powerful new backend of the Westerbork Synthesis Radio Telescope (WSRT) of two galaxy clusters at z=0.2 has revealed neutral hydrogen emission from 42 galaxies. The WSRT probes a total combined volume of 3.4x10^4 Mpc^3 at resolutions of 54x86 kpc^2 and 19.7 km/s, surveying both clusters and the large scale structure in which they are embedded. In Abell 963, a dynamically relaxed, lensing Butcher-Oemler cluster with a high blue fraction, most of the gas-rich galaxies are located between 1 and 3 Mpc in projection, northeast from the cluster core. Their velocities are slightly redshifted with respect to the cluster, and this is likely a background group. None of the blue galaxies in the core of Abell 963 are detected in HI, although they have similar colors and luminosities as the HI detected galaxies in the cluster outskirts and field. Abell 2192 is less massive and more diffuse. Here, the gas-rich galaxies are more uniformly distributed. The detected HI masses range from 5x10^9 to 4x10^10 Msun. Some galaxies are spatially resolved, providing rudimentary rotation curves useful for detailed kinematic studies of galaxies in various environments. This is a pilot for ultra-deep integrations down to HI masses of 8x10^8 Msun, providing a complete survey of the gas content of galaxies at z=0.2, probing environments ranging from cluster cores to voids.Comment: 5 pages, 6 figures + 1 Plate, accepted for publication in the Astrophysical Journal Letter

    The Stellar Mass Structure of Massive Galaxies from z = 0 to z = 2.5: Surface Density Profiles and Half-mass Radii

    Get PDF
    We present stellar mass surface density profiles of a mass-selected sample of 177 galaxies at 0.5 {lt} z {lt} 2.5, obtained using very deep Hubble Space Telescope optical and near-infrared data over the GOODS-South field, including recent CANDELS data. Accurate stellar mass surface density profiles have been measured for the first time for a complete sample of high-redshift galaxies more massive than 1010.7^{10.7} M _{⊙}. The key advantage of this study compared to previous work is that the surface brightness profiles are deconvolved for point-spread function smoothing, allowing accurate measurements of the structure of the galaxies. The surface brightness profiles account for contributions from complex galaxy structures such as rings and faint outer disks. Mass profiles are derived using radial rest-frame ug color profiles and a well-established empirical relation between these colors and the stellar mass-to-light ratio. We derive stellar half-mass radii from the mass profiles, and find that these are on average ~{}25% smaller than rest-frame g-band half-light radii. This average size difference of 25% is the same at all redshifts, and does not correlate with stellar mass, specific star formation rate, effective surface density, Sérsic index, or galaxy size. Although on average the difference between half-mass size and half-light size is modest, for approximately 10% of massive galaxies this difference is more than a factor of two. These extreme galaxies are mostly extended, disk-like systems with large central bulges. These results are robust, but could be impacted if the central dust extinction becomes high. ALMA observations can be used to explore this possibility. These results provide added support for galaxy growth scenarios wherein massive galaxies at these epochs grow by accretion onto their outer regions

    Extinction Curves, Distances, and Clumpiness of Diffuse Interstellar Dust Clouds

    Get PDF
    We present CCD photometry in UBVRI of several thousand Galactic field stars in four large (>1 degree^2) regions centered on diffuse interstellar dust clouds, commonly referred to as ``cirrus'' clouds (with optical depth A_V less than unity). Our goal in studying these stars is to investigate the properties of the cirrus clouds. A comparison of the observed stellar surface density between on-cloud and off-cloud regions as a function of apparent magnitude in each of the five bands effectively yields a measure of the extinction through each cloud. For two of the cirrus clouds, this method is used to derive UBVRI star counts-based extinction curves, and U-band counts are used to place constraints on the cloud distance. The color distribution of stars and their location in (U-B, B-V) and (B-V, V-I) color-color space are analyzed in order to determine the amount of selective extinction (reddening) caused by the cirrus. The color excesses, A_lambda-A_V, derived from stellar color histogram offsets for the four clouds, are better fit by a reddening law that rises steeply towards short wavelengths [R_V==A_V/E(B-V)<=2] than by the standard law (R_V=3.1). This may be indicative of a higher-than-average abundance of small dust grains relative to larger grains in diffuse cirrus clouds. The shape of the counts-based effective extinction curve and a comparison of different estimates of the dust optical depth (extinction optical depth derived from background star counts/colors; emission optical depth derived from far infrared measurements), are used to measure the degree of clumpiness in clouds. The set of techniques explored in this paper can be readily adapted to the Sloan Digital Sky Survey data set in order to carry out a systematic, large-scale study of cirrus clouds.Comment: 22 pages, 13 figures (postscript, gif, jpg). Accepted for publication in the Astronomical Journal, scheduled for the May 1999 issue. Full resolution postscript versions of all figures are available at http://www.ucolick.org/~arpad

    The SFXC software correlator for Very Long Baseline Interferometry: Algorithms and Implementation

    Get PDF
    In this paper a description is given of the SFXC software correlator, developed and maintained at the Joint Institute for VLBI in Europe (JIVE). The software is designed to run on generic Linux-based computing clusters. The correlation algorithm is explained in detail, as are some of the novel modes that software correlation has enabled, such as wide-field VLBI imaging through the use of multiple phase centres and pulsar gating and binning. This is followed by an overview of the software architecture. Finally, the performance of the correlator as a function of number of CPU cores, telescopes and spectral channels is shown.Comment: Accepted by Experimental Astronom

    The formation of voids in a universe with cold dark matter and a cosmological constant

    Get PDF
    A spherical Lagrangian hydrodynamical code has been written to study the formation of cosmological structures in the early Universe. In this code we take into account the presence of collisionless non-baryonic cold dark matter (CDM), the cosmological constant and a series of physical processes present during and after the recombination era, such as photon drag resulting from the cosmic background radiation and hydrogen molecular production. We follow the evolution of the structure since the recombination era until the present epoch. As an application of this code we study the formation of voids starting from negative density perturbations which evolved during and after the recombination era. We analyse a set of COBE-normalized models, using different spectra to see their influence on the formation of voids. Our results show that large voids with diameters ranging from 10h^{-1} Mpc up to 50h^{-1} Mpc can be formed in a universe model dominated by the cosmological constant (\Omega_\Lambda ~ 0.8). This particular scenario is capable of forming large and deep empty regions (with density contrasts \delta < -0.6). Our results also show that the physical processes acting on the baryonic matter produce a transition region where the radius of the dark matter component is greater than the baryonic void radius. The thickness of this transition region ranges from about tens of kiloparsecs up to a few megaparsecs, depending on the spectrum considered. Putative objects formed near voids and within the transition region would have a different amount of baryonic/dark matter when compared with \Omega_b/\Omega_d. If one were to use these galaxies to determine, by dynamical effects or other techniques, the quantity of dark matter present in the Universe, the result obtained would be only local and not representative of the Universe as a whole.Comment: MNRAS (in press); 9 pages, no figure

    An analysis of spectra in the Red Rectangle nebula

    Full text link
    This paper presents an analysis of a series of spectra in the Red Rectangle nebula. Only the reddest part of the spectra can safely be attributed to light from the nebula, and indicates Rayleigh scattering by the gas, in conformity with the large angles of scattering involved and the proximity of the star. In the blue, light from HD44179, refracted or scattered in the atmosphere, dominates the spectra. This paper questions the reliability of ground-based observations of extended objects in the blue.Comment: 25 figure
    corecore