460 research outputs found

    Avalanches in the lung: A statistical mechanical model

    Full text link
    We study a statistical mechanical model for the dynamics of lung inflation which incorporates recent experimental observations on the opening of individual airways by a cascade or avalanche mechanism. Using an exact mapping of the avalanche problem onto percolation on a Cayley tree, we analytically derive the exponents describing the size distribution of the first avalanches and test the analytical solution by numerical simulations. We find that the tree-like structure of the airways together with the simplest assumptions concerning opening threshold pressures of each airway, is sufficient to explain the existence of power-law distributions observed experimentally.Comment: 4 pages, Figures avaliable by mail from [email protected], REVTE

    A Role of Myocardin Related Transcription Factor-A (MRTF-A) in Scleroderma Related Fibrosis.

    Get PDF
    In scleroderma (systemic sclerosis, SSc), persistent activation of myofibroblast leads to severe skin and organ fibrosis resistant to therapy. Increased mechanical stiffness in the involved fibrotic tissues is a hallmark clinical feature and a cause of disabling symptoms. Myocardin Related Transcription Factor-A (MRTF-A) is a transcriptional co-activator that is sequestered in the cytoplasm and translocates to the nucleus under mechanical stress or growth factor stimulation. Our objective was to determine if MRTF-A is activated in the disease microenvironment to produce more extracellular matrix in progressive SSc. Immunohistochemistry studies demonstrate that nuclear translocation of MRTF-A in scleroderma tissues occurs in keratinocytes, endothelial cells, infiltrating inflammatory cells, and dermal fibroblasts, consistent with enhanced signaling in multiple cell lineages exposed to the stiff extracellular matrix. Inhibition of MRTF-A nuclear translocation or knockdown of MRTF-A synthesis abolishes the SSc myofibroblast enhanced basal contractility and synthesis of type I collagen and inhibits the matricellular profibrotic protein, connective tissue growth factor (CCN2/CTGF). In MRTF-A null mice, basal skin and lung stiffness was abnormally reduced and associated with altered fibrillar collagen. MRTF-A has a role in SSc fibrosis acting as a central regulator linking mechanical cues to adverse remodeling of the extracellular matrix

    Effect of ferric carboxymaltose on calculated plasma volume status and clinical congestion: a FAIR‐HF substudy

    Full text link
    Iron deficiency worsens symptoms, quality of life, and exercise capacity in chronic heart failure (CHF) and might do so by promoting fluid retention. We assessed whether iron repletion improved congestion in CHF and appraised the prognostic utility of calculated plasma volume status (PVS), a novel index of congestion, in the FAIR‐HF data set. Methods and results In FAIR‐HF, 459 iron deficient CHF patients were randomized to intravenous ferric carboxymaltose (FCM) or saline and assessed at 4, 12, and 24 weeks. Using weight and haematocrit, we calculated PVS in 436 patients. At baseline, PVS and weight were −5.5 ± 7.7% and 76.9 ± 14.3 kg, with peripheral oedema evident in 35% of subjects. Higher PVS values correlated to other congestion surrogates such as lower serum albumin. At 4 weeks, FCM was associated with greater reductions in weight (0.02) and PVS (P −4% at baseline predicted worse outcomes even after adjustment for treatment assignment (hazard ratio 1.88, 95% confidence interval 1.01-3.51, 0.046). Conclusions Intravenous iron therapy with FCM is associated with early reductions in PVS and weight, implying that decongestion might be one mechanism via which iron repletion aids CHF patients. Calculated PVS is of prognostic utility in this cohort

    Interplay between geometry and flow distribution in an airway tree

    Full text link
    Uniform fluid flow distribution in a symmetric volume can be realized through a symmetric branched tree. It is shown here, however, that the flow partitioning can be highly sensitive to deviations from exact symmetry if inertial effects are present. This is found by direct numerical simulation of the Navier-Stokes equations in a 3D tree geometry. The flow asymmetry is quantified and found to depend on the Reynolds number. Moreover, for a given Reynolds number, we show that the flow distribution depends on the aspect ratio of the branching elements as well as their angular arrangement. Our results indicate that physiological variability should be severely restricted in order to ensure uniform fluid distribution in a tree. This study suggests that any non-uniformity in the air flow distribution in human lungs should be influenced by the respiratory conditions, rest or hard exercise

    On the behaviour of lung tissue under tension and compression

    Get PDF
    Lung injuries are common among those who suffer an impact or trauma. The relative severity of injuries up to physical tearing of tissue have been documented in clinical studies. However, the specific details of energy required to cause visible damage to the lung parenchyma are lacking. Furthermore, the limitations of lung tissue under simple mechanical loading are also not well documented. This study aimed to collect mechanical test data from freshly excised lung, obtained from both Sprague-Dawley rats and New Zealand White rabbits. Compression and tension tests were conducted at three different strain rates: 0.25, 2.5 and 25 min−1. This study aimed to characterise the quasi-static behaviour of the bulk tissue prior to extending to higher rates. A nonlinear viscoelastic analytical model was applied to the data to describe their behaviour. Results exhibited asymmetry in terms of differences between tension and compression. The rabbit tissue also appeared to exhibit stronger viscous behaviour than the rat tissue. As a narrow strain rate band is explored here, no conclusions are being drawn currently regarding the rate sensitivity of rat tissue. However, this study does highlight both the clear differences between the two tissue types and the important role that composition and microstructure can play in mechanical response

    Fractional-order viscoelasticity applied to describe uniaxial stress relaxation of human arteries.

    Get PDF
    Viscoelastic models can be used to better understand arterial wall mechanics in physiological and pathological conditions. The arterial wall reveals very slow time-dependent decays in uniaxial stress-relaxation experiments, coherent with weak power-law functions. Quasi-linear viscoelastic (QLV) theory was successfully applied to modeling such responses, but an accurate estimation of the reduced relaxation function parameters can be very difficult. In this work, an alternative relaxation function based on fractional calculus theory is proposed to describe stress relaxation experiments in strips cut from healthy human aortas. Stress relaxation (1 h) was registered at three incremental stress levels. The novel relaxation function with three parameters was integrated into the QLV theory to fit experimental data. It was based in a modified Voigt model, including a fractional element of order α, called spring–pot. The stressrelaxation predictionwas accurate and fast. Sensitivity plots for each parameter presented a minimum near their optimal values. Least-squares errors remained below 2%. Values of order α = 0.1–0.3 confirmed a predominant elastic behavior. The other two parameters of the model can be associated to elastic and viscous constants that explain the time course of the observed relaxation function. The fractional-order model integrated into the QLV theory proved to capture the essential features of the arterial wall mechanical response

    A comprehensive computational model of sound transmission through the porcine lung

    Get PDF
    A comprehensive computational simulation model of sound transmission through the porcine lung is introduced and experimentally evaluated. This subject-specific model utilizes parenchymal and major airway geometry derived from x-ray CT images. The lung parenchyma is modeled as a poroviscoelastic material using Biot theory. A finite element (FE) mesh of the lung that includes airway detail is created and used in COMSOL FE software to simulate the vibroacoustic response of the lung to sound input at the trachea. The FE simulation model is validated by comparing simulation results to experimental measurements using scanning laser Doppler vibrometry on the surface of an excised, preserved lung. The FE model can also be used to calculate and visualize vibroacoustic pressure and motion inside the lung and its airways caused by the acoustic input. The effect of diffuse lung fibrosis and of a local tumor on the lung acoustic response is simulated and visualized using the FE model. In the future, this type of visualization can be compared and matched with experimentally obtained elastographic images to better quantify regional lung material properties to noninvasively diagnose and stage disease and response to treatment

    Fluctuation analysis of lung function as a predictor of long-term response to beta2-agonists

    Get PDF
    The response to beta(2)-agonists differs between asthmatics and has been linked to subsequent adverse events, even death. Possible determinants include beta(2)-adrenoceptor genotype at position 16, lung function and airway hyperresponsiveness. Fluctuation analysis provides a simple parameter alpha measuring the complex correlation properties of day-to-day peak expiratory flow. The present study investigated whether alpha predicts clinical response to beta(2)-agonist treatment, taking into account other conventional predictors. Analysis was performed on previously published twice-daily peak expiratory flow measurements in 66 asthmatic adults over three 6-month randomised order treatment periods: placebo, salbutamol and salmeterol. Multiple linear regression was used to determine the association between alpha during the placebo period and response to treatment (change in the number of days with symptoms), taking into account other predictors namely beta(2)-adrenoceptor genotype, lung function and its variability, and airway hyperresponsiveness. The current authors found that alpha measured during the placebo period considerably improved the prediction of response to salmeterol treatment, taking into account genotype, lung function or its variability, or airway hyperresponsiveness. The present study provides further evidence that response to beta(2)-agonists is related to the time correlation properties of lung function in asthma. The current authors conclude that fluctuation analysis of lung function offers a novel predictor to identify patients who may respond well or poorly to treatment

    Avalanches in Breakdown and Fracture Processes

    Full text link
    We investigate the breakdown of disordered networks under the action of an increasing external---mechanical or electrical---force. We perform a mean-field analysis and estimate scaling exponents for the approach to the instability. By simulating two-dimensional models of electric breakdown and fracture we observe that the breakdown is preceded by avalanche events. The avalanches can be described by scaling laws, and the estimated values of the exponents are consistent with those found in mean-field theory. The breakdown point is characterized by a discontinuity in the macroscopic properties of the material, such as conductivity or elasticity, indicative of a first order transition. The scaling laws suggest an analogy with the behavior expected in spinodal nucleation.Comment: 15 pages, 12 figures, submitted to Phys. Rev. E, corrected typo in authors name, no changes to the pape
    • 

    corecore