213 research outputs found

    Anomalous diffusion associated with nonlinear fractional derivative Fokker-Planck-like equation: Exact time-dependent solutions

    Full text link
    We consider the d=1d=1 nonlinear Fokker-Planck-like equation with fractional derivatives tP(x,t)=Dγxγ[P(x,t)]ν\frac{\partial}{\partial t}P(x,t)=D \frac{\partial^{\gamma}}{\partial x^{\gamma}}[P(x,t) ]^{\nu}. Exact time-dependent solutions are found for ν=2γ1+γ \nu = \frac{2-\gamma}{1+ \gamma} (<γ2-\infty<\gamma \leq 2). By considering the long-distance {\it asymptotic} behavior of these solutions, a connection is established, namely q=γ+3γ+1q=\frac{\gamma+3}{\gamma+1} (0<γ20<\gamma \le 2), with the solutions optimizing the nonextensive entropy characterized by index qq . Interestingly enough, this relation coincides with the one already known for L\'evy-like superdiffusion (i.e., ν=1\nu=1 and 0<γ20<\gamma \le 2). Finally, for (γ,ν)=(2,0)(\gamma,\nu)=(2, 0) we obtain q=5/3q=5/3 which differs from the value q=2q=2 corresponding to the γ=2\gamma=2 solutions available in the literature (ν<1\nu<1 porous medium equation), thus exhibiting nonuniform convergence.Comment: 3 figure

    Enhancement of Stochastic Resonance in distributed systems due to a selective coupling

    Full text link
    Recent massive numerical simulations have shown that the response of a "stochastic resonator" is enhanced as a consequence of spatial coupling. Similar results have been analytically obtained in a reaction-diffusion model, using "nonequilibrium potential" techniques. We now consider a field-dependent diffusivity and show that the "selectivity" of the coupling is more efficient for achieving stochastic-resonance enhancement than its overall value in the constant-diffusivity case.Comment: 10 pgs (RevTex), 4 figures, submitted to Phys.Rev.Let

    Stochastic resonance between dissipative structures in a bistable noise-sustained dynamics

    Get PDF
    We study an extended system that without noise shows a monostable dynamics, but when submitted to an adequate multiplicative noise, an effective bistable dynamics arise. The stochastic resonance between the attractors of the \textit{noise-sustained dynamics} is investigated theoretically in terms of a two-state approximation. The knowledge of the exact nonequilibrium potential allows us to obtain the output signal-to-noise ratio. Its maximum is predicted in the symmetric case for which both attractors have the same nonequilibrium potential value.Comment: RevTex, 13 pages, 6 figures, accepted in Physical Review

    Exact expression for the diffusion propagator in a family of time-dependent anharmonic potentials

    Full text link
    We have obtained the exact expression of the diffusion propagator in the time-dependent anharmonic potential V(x,t)=1/2a(t)x2+blnxV(x,t)={1/2}a(t)x^2+b\ln x. The underlying Euclidean metric of the problem allows us to obtain analytical solutions for a whole family of the elastic parameter a(t), exploiting the relation between the path integral representation of the short time propagator and the modified Bessel functions. We have also analyzed the conditions for the appearance of a non-zero flow of particles through the infinite barrier located at the origin (b<0).Comment: RevTex, 19 pgs. Accepted in Physical Review

    Genetic Diversity and Population History of a Critically Endangered Primate, the Northern Muriqui (Brachyteles hypoxanthus)

    Get PDF
    Social, ecological, and historical processes affect the genetic structure of primate populations, and therefore have key implications for the conservation of endangered species. The northern muriqui (Brachyteles hypoxanthus) is a critically endangered New World monkey and a flagship species for the conservation of the Atlantic Forest hotspot. Yet, like other neotropical primates, little is known about its population history and the genetic structure of remnant populations. We analyzed the mitochondrial DNA control region of 152 northern muriquis, or 17.6% of the 864 northern muriquis from 8 of the 12 known extant populations and found no evidence of phylogeographic partitions or past population shrinkage/expansion. Bayesian and classic analyses show that this finding may be attributed to the joint contribution of female-biased dispersal, demographic stability, and a relatively large historic population size. Past population stability is consistent with a central Atlantic Forest Pleistocene refuge. In addition, the best scenario supported by an Approximate Bayesian Computation analysis, significant fixation indices (ΦST = 0.49, ΦCT = 0.24), and population-specific haplotypes, coupled with the extirpation of intermediate populations, are indicative of a recent geographic structuring of genetic diversity during the Holocene. Genetic diversity is higher in populations living in larger areas (>2,000 hectares), but it is remarkably low in the species overall (θ = 0.018). Three populations occurring in protected reserves and one fragmented population inhabiting private lands harbor 22 out of 23 haplotypes, most of which are population-exclusive, and therefore represent patchy repositories of the species' genetic diversity. We suggest that these populations be treated as discrete units for conservation management purposes

    Effects of local habitat variation on the behavioral ecology of two sympatric groups of brown howler monkey (alouatta clamitans)

    Get PDF
    Although the brown howler monkey (Alouatta clamitans) is a relatively well-studied Neotropical primate, its behavioral and dietary flexibility at the intra-population level remains poorly documented. This study presents data collected on the behavior and ecology of two closely located groups of brown howlers during the same period at the RPPN Feliciano Miguel Abdala in southeastern Brazil. One group occupied a primary valley habitat, henceforth the Valley Group (VG), and the other group occupied a regenerating hillside habitat, the Hill Group (HG). We hypothesized differences in the behavior and ecological parameters between these sympatric groups due to the predicted harsher conditions on the hillside, compared to the valley. We measured several habitat parameters within the home range of both groups and collected data on the activity budget, diet and day range lengths, from August to November 2005, between dawn and dusk. In total, behavioral data were collected for 26 (318 h) and 28 (308 h) sampling days for VG and HG, respectively. As we predicted, HG spent significantly more time feeding and consumed less fruit and more leaves than VG, consistent with our finding that the hillside habitat was of lower quality. However, HG also spent less time resting and more time travelling than VG, suggesting that the monkeys had to expend more time and energy to obtain high-energy foods, such as fruits and flowers that were more widely spaced in their hill habitat. Our results revealed that different locations in this forest vary in quality and raise the question of how different groups secure their home ranges. Fine-grained comparisons such as this are important to prioritize conservation and management areas within a reserve

    Diffusive coupling can discriminate between similar reaction mechanisms in an allosteric enzyme system

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A central question for the understanding of biological reaction networks is how a particular dynamic behavior, such as bistability or oscillations, is realized at the molecular level. So far this question has been mainly addressed in well-mixed reaction systems which are conveniently described by ordinary differential equations. However, much less is known about how molecular details of a reaction mechanism can affect the dynamics in diffusively coupled systems because the resulting partial differential equations are much more difficult to analyze.</p> <p>Results</p> <p>Motivated by recent experiments we compare two closely related mechanisms for the product activation of allosteric enzymes with respect to their ability to induce different types of reaction-diffusion waves and stationary Turing patterns. The analysis is facilitated by mapping each model to an associated complex Ginzburg-Landau equation. We show that a sequential activation mechanism, as implemented in the model of Monod, Wyman and Changeux (MWC), can generate inward rotating spiral waves which were recently observed as glycolytic activity waves in yeast extracts. In contrast, in the limiting case of a simple Hill activation, the formation of inward propagating waves is suppressed by a Turing instability. The occurrence of this unusual wave dynamics is not related to the magnitude of the enzyme cooperativity (as it is true for the occurrence of oscillations), but to the sensitivity with respect to changes of the activator concentration. Also, the MWC mechanism generates wave patterns that are more stable against long wave length perturbations.</p> <p>Conclusions</p> <p>This analysis demonstrates that amplitude equations, which describe the spatio-temporal dynamics near an instability, represent a valuable tool to investigate the molecular effects of reaction mechanisms on pattern formation in spatially extended systems. Using this approach we have shown that the occurrence of inward rotating spiral waves in glycolysis can be explained in terms of an MWC, but not with a Hill mechanism for the activation of the allosteric enzyme phosphofructokinase. Our results also highlight the importance of enzyme oligomerization for a possible experimental generation of Turing patterns in biological systems.</p

    A Feedback Quenched Oscillator Produces Turing Patterning with One Diffuser

    Get PDF
    Efforts to engineer synthetic gene networks that spontaneously produce patterning in multicellular ensembles have focused on Turing's original model and the “activator-inhibitor” models of Meinhardt and Gierer. Systems based on this model are notoriously difficult to engineer. We present the first demonstration that Turing pattern formation can arise in a new family of oscillator-driven gene network topologies, specifically when a second feedback loop is introduced which quenches oscillations and incorporates a diffusible molecule. We provide an analysis of the system that predicts the range of kinetic parameters over which patterning should emerge and demonstrate the system's viability using stochastic simulations of a field of cells using realistic parameters. The primary goal of this paper is to provide a circuit architecture which can be implemented with relative ease by practitioners and which could serve as a model system for pattern generation in synthetic multicellular systems. Given the wide range of oscillatory circuits in natural systems, our system supports the tantalizing possibility that Turing pattern formation in natural multicellular systems can arise from oscillator-driven mechanisms

    Stakes sensitivity and credit rating: a new challenge for regulators

    Get PDF
    The ethical practices of credit rating agencies (CRAs), particularly following the 2008 financial crisis, have been subject to extensive analysis by economists, ethicists, and policymakers. We raise a novel issue facing CRAs that has to do with a problem concerning the transmission of epistemic status of ratings from CRAs to the beneficiaries of the ratings (investors, etc.), and use it to provide a new challenge for regulators. Building on recent work in philosophy, we argue that since CRAs have different stakes than the beneficiaries of the ratings in the ratings being accurate, what counts as knowledge (and as having ‘epistemic status’) concerning credit risk for a CRA may not count as knowledge (as having epistemic status) for the beneficiary. Further, as it stands, many institutional investors (pension funds, insurance companies, etc.) are bound by law to make some of their investment decisions dependent on the ratings of officially recognized CRAs. We argue that the observation that the epistemic status of ratings does not transmit from CRAs to beneficiaries makes salient a new challenge for those who think current regulation regarding the CRAs is prudentially justified, namely, to show that the harm caused by acting on a rating that does not have epistemic status for beneficiaries is compensated by the benefit from them acting on a CRA rating that does have epistemic status for the CRA. Unlike most other commentators, therefore, we offer a defeasible reason to drop references to CRAs in prudential regulation of the financial industry

    The long lives of primates and the ‘invariant rate of ageing’ hypothesis

    Get PDF
    Is it possible to slow the rate of ageing, or do biological constraints limit its plasticity? We test the ‘invariant rate of ageing’ hypothesis, which posits that the rate of ageing is relatively fixed within species, with a collection of 39 human and nonhuman primate datasets across seven genera. We first recapitulate, in nonhuman primates, the highly regular relationship between life expectancy and lifespan equality seen in humans. We next demonstrate that variation in the rate of ageing within genera is orders of magnitude smaller than variation in pre-adult and age-independent mortality. Finally, we demonstrate that changes in the rate of ageing, but not other mortality parameters, produce striking, species-atypical changes in mortality patterns. Our results support the invariant rate of ageing hypothesis, implying biological constraints on how much the human rate of ageing can be slowed
    corecore