215 research outputs found

    Electric field representation of pulsar intensity spectra

    Get PDF
    Pulsar dynamic spectra exhibit high visibility fringes arising from interference between scattered radio waves. These fringes may be random or highly ordered patterns, depending on the nature of the scattering or refraction. Here we consider the possibility of decomposing pulsar dynamic spectra -- which are intensity measurements -- into their constituent scattered waves, i.e. electric field components. We describe an iterative method of achieving this decomposition and show how the algorithm performs on data from the pulsar B0834+06. The match between model and observations is good, although not formally acceptable as a representation of the data. Scattered wave components derived in this way are immediately useful for qualitative insights into the scattering geometry. With some further development this approach can be put to a variety of uses, including: imaging the scattering and refracting structures in the interstellar medium; interstellar interferometric imaging of pulsars at very high angular resolution; and mitigating pulse arrival time fluctuations due to interstellar scattering.Comment: 7 Pages, 2 Figures, revised version, accepted by MNRA

    Gravitational Waves Probe the Coalescence Rate of Massive Black Hole Binaries

    Get PDF
    We calculate the expected nHz--ÎŒ\muHz gravitational wave (GW) spectrum from coalescing Massive Black Hole (MBH) binaries resulting from mergers of their host galaxies. We consider detection of this spectrum by precision pulsar timing and a future Pulsar Timing Array. The spectrum depends on the merger rate of massive galaxies, the demographics of MBHs at low and high redshift, and the dynamics of MBH binaries. We apply recent theoretical and observational work on all of these fronts. The spectrum has a characteristic strain hc(f) 10−15(f/yr−1)−2/3h_c(f)~10^{-15} (f/yr^{-1})^{-2/3}, just below the detection limit from recent analysis of precision pulsar timing measurements. However, the amplitude of the spectrum is still very uncertain owing to approximations in the theoretical formulation of the model, to our lack of knowledge of the merger rate and MBH population at high redshift, and to the dynamical problem of removing enough angular momentum from the MBH binary to reach a GW-dominated regime.Comment: 31 Pages, 8 Figures, small changes to match the published versio

    Effects of Intermittent Emission: Noise Inventory for Scintillating Pulsar B0834+06

    Full text link
    We compare signal and noise for observations of the scintillating pulsar B0834+06, using very-long baseline interferometry and a single-dish spectrometer. Comparisons between instruments and with models suggest that amplitude variations of the pulsar strongly affect the amount and distribution of self-noise. We show that noise follows a quadratic polynomial with flux density, in spectral observations. Constant coefficients, indicative of background noise, agree well with expectation; whereas second-order coefficients, indicative of self-noise, are about 3 times values expected for a pulsar with constant on-pulse flux density. We show that variations in flux density during the 10-sec integration account for the discrepancy. In the secondary spectrum, about 97% of spectral power lies within the pulsar's typical scintillation bandwidth and timescale; an extended scintillation arc contains about 3%. For a pulsar with constant on-pulse flux density, noise in the dynamic spectrum will appear as a uniformly-distributed background in the secondary spectrum. We find that this uniform noise background contains 95% of noise in the dynamic spectrum for interferometric observations; but only 35% of noise in the dynamic spectrum for single-dish observations. Receiver and sky dominate noise for our interferometric observations, whereas self-noise dominates for single-dish. We suggest that intermittent emission by the pulsar, on timescales < 300 microseconds, concentrates self-noise near the origin in the secondary spectrum, by correlating noise over the dynamic spectrum. We suggest that intermittency sets fundamental limits on pulsar astrometry or timing. Accounting of noise may provide means for detection of intermittent sources, when effects of propagation are unknown or impractical to invert.Comment: 38 pages, 10 figure

    Scattering features and variability of the Crab pulsar

    Get PDF
    We report on Westerbork Synthesis Radio Telescope observations of the Crab pulsar at 350 MHz from 2012 November 24 until 2015 June 21. During this period we consistently observe variations in the pulse profile of the Crab. Both variations in the scattering width of the pulse profile as well as delayed copies, also known as echoes, are seen regularly. These observations support the classification of two types of echoes: those that follow the truncated exponential shape expected for the thin-screen scattering approximation, and echoes that show a smoother, more Gaussian shape. During a sequence of high-cadence observations in 2015, we find that these non-exponential echoes evolve in time by approaching the main pulse and interpulse in phase, overlapping the main pulse and interpulse, and later receding. We find a pulse scatter-broadening time scale, τ\tau, scaling with frequency as Μα\nu^{\alpha}, with α=−3.9±0.5\alpha=-3.9\pm0.5, which is consistent with expected values for thin-screen scattering modelsComment: 10 pages, 7 figure

    The Triple Pulsar System PSR B1620-26 in M4

    Get PDF
    The millisecond pulsar PSR B1620-26, in the globular cluster M4, has a white dwarf companion in a half-year orbit. Anomalously large variations in the pulsar's apparent spin-down rate have suggested the presence of a second companion in a much wider orbit. Using timing observations made on more than seven hundred days spanning eleven years, we confirm this anomalous timing behavior. We explicitly demonstrate, for the first time, that a timing model consisting of the sum of two non-interacting Keplerian orbits can account for the observed signal. Both circular and elliptical orbits are allowed, although highly eccentric orbits require improbable orbital geometries. The motion of the pulsar in the inner orbit is very nearly a Keplerian ellipse, but the tidal effects of the outer companion cause variations in the orbital elements. We have measured the change in the projected semi-major axis of the orbit, which is dominated by precession-driven changes in the orbital inclination. This measurement, along with limits on the rate of change of other orbital elements, can be used to significantly restrict the properties of the outer orbit. We find that the second companion most likely has a mass m~0.01 Msun --- it is almost certainly below the hydrogen burning limit (m<0.036 Msun, 95% confidence) --- and has a current distance from the binary of ~35 AU and orbital period of order one hundred years. Circular (and near-circular) orbits are allowed only if the pulsar magnetic field is ~3x10^9 G, an order of magnitude higher than a typical millisecond pulsar field strength. In this case, the companion has mass m~1.2x10^-3 Msun and orbital period ~62 years.Comment: 12 pages, 6 figures, 3 tables. Very minor clarifications and rewording. Accepted for publication in the Astrophys.

    The stationary phase point method for transitional scattering: diffractive radio scintillation for pulsar

    Get PDF
    The stationary phase point (SPP) method in one-dimensional case is introduced to treat the diffractive scintillation. From weak scattering, where the SPP number N=1, to strong scattering (N≫\gg1), via transitional scattering regime (N∌\sim2,3), we find that the modulation index of intensity experiences the monotonically increasing from 0 to 1 with the scattering strength, characterized by the ratio of Fresnel scale \rf to diffractive scale \rdiff.Comment: Hanas Meeting paper, appear in ChJAA, 2006, 6, Su

    Gravitational wave detection using pulsars: status of the Parkes Pulsar Timing Array project

    Get PDF
    The first direct detection of gravitational waves may be made through observations of pulsars. The principal aim of pulsar timing array projects being carried out worldwide is to detect ultra-low frequency gravitational waves (f ~ 10^-9 to 10^-8 Hz). Such waves are expected to be caused by coalescing supermassive binary black holes in the cores of merged galaxies. It is also possible that a detectable signal could have been produced in the inflationary era or by cosmic strings. In this paper we review the current status of the Parkes Pulsar Timing Array project (the only such project in the Southern hemisphere) and compare the pulsar timing technique with other forms of gravitational-wave detection such as ground- and space-based interferometer systems.Comment: Accepted for publication in PAS
    • 

    corecore