77 research outputs found

    Regulation mechanisms in spatial stochastic development models

    Full text link
    The aim of this paper is to analyze different regulation mechanisms in spatial continuous stochastic development models. We describe the density behavior for models with global mortality and local establishment rates. We prove that the local self-regulation via a competition mechanism (density dependent mortality) may suppress a unbounded growth of the averaged density if the competition kernel is superstable.Comment: 19 page

    A randomised double-blind placebo-controlled trial investigating the behavioural effects of vitamin, mineral and n-3 fatty acid supplementation in typically developing adolescent schoolchildren

    Get PDF
    This material is free to view and download for private research and study only. Not for re-distribution, re-sale or use in derivative works. © 2015 The Authors. Published by Cambridge University Press.Nutrient deficiencies have been implicated in anti-social behaviour in schoolchildren; hence, correcting them may improve sociability. We therefore tested the effects of vitamin, mineral and n-3 supplementation on behaviour in a 12-week double-blind randomised placebo-controlled trial in typically developing UK adolescents aged 13–16 years (n 196). Changes in erythrocyte n-3 and 6 fatty acids and some mineral and vitamin levels were measured and compared with behavioural changes, using Conners’ teacher ratings and school disciplinary records. At baseline, the children’s PUFA (n-3 and n-6), vitamin and mineral levels were low, but they improved significantly in the group treated with n-3, vitamins and minerals (P=0·0005). On the Conners disruptive behaviour scale, the group given the active supplements improved, whereas the placebo group worsened (F=5·555, d=0·35; P=0·02). The general level of disciplinary infringements was low, thus making it difficult to obtain improvements. However, throughout the school term school disciplinary infringements increased significantly (by 25 %; Bayes factor=115) in both the treated and untreated groups. However, when the subjects were split into high and low baseline infringements, the low subset increased their offences, whereas the high-misbehaviour subset appeared to improve after treatment. But it was not possible to determine whether this was merely a statistical artifact. Thus, when assessed using the validated and standardised Conners teacher tests (but less clearly when using school discipline records in a school where misbehaviour was infrequent), supplementary nutrition might have a protective effect against worsening behaviour.Peer reviewe

    COMPETITIVE OR WEAK COOPERATIVE STOCHASTIC LOTKA-VOLTERRA SYSTEMS CONDITIONED TO NON-EXTINCTION

    Get PDF
    International audienceWe are interested in the long time behavior of a two-type density-dependent biological population conditioned to non-extinction, in both cases of competition or weak cooperation between the two species. This population is described by a stochastic Lotka-Volterra system, obtained as limit of renormalized interacting birth and death processes. The weak cooperation assumption allows the system not to blow up. We study the existence and uniqueness of a quasi-stationary distribution, that is convergence to equilibrium conditioned to non extinction. To this aim we generalize in two-dimensions spectral tools developed for one-dimensional generalized Feller diffusion processes. The existence proof of a quasi-stationary distribution is reduced to the one for a dd-dimensional Kolmogorov diffusion process under a symmetry assumption. The symmetry we need is satisfied under a local balance condition relying the ecological rates. A novelty is the outlined relation between the uniqueness of the quasi-stationary distribution and the ultracontractivity of the killed semi-group. By a comparison between the killing rates for the populations of each type and the one of the global population, we show that the quasi-stationary distribution can be either supported by individuals of one (the strongest one) type or supported by individuals of the two types. We thus highlight two different long time behaviors depending on the parameters of the model: either the model exhibits an intermediary time scale for which only one type (the dominant trait) is surviving, or there is a positive probability to have coexistence of the two species

    Quasi-stationary regime of a branching random walk in presence of an absorbing wall

    Full text link
    A branching random walk in presence of an absorbing wall moving at a constant velocity vv undergoes a phase transition as the velocity vv of the wall varies. Below the critical velocity vcv_c, the population has a non-zero survival probability and when the population survives its size grows exponentially. We investigate the histories of the population conditioned on having a single survivor at some final time TT. We study the quasi-stationary regime for v<vcv<v_c when TT is large. To do so, one can construct a modified stochastic process which is equivalent to the original process conditioned on having a single survivor at final time TT. We then use this construction to show that the properties of the quasi-stationary regime are universal when v→vcv\to v_c. We also solve exactly a simple version of the problem, the exponential model, for which the study of the quasi-stationary regime can be reduced to the analysis of a single one-dimensional map.Comment: 2 figures, minor corrections, one reference adde

    Vital Rates from the Action of Mutation Accumulation

    Get PDF
    New models for evolutionary processes of mutation accumulation allow hypotheses about the age-specificity of mutational effects to be translated into predictions of heterogeneous population hazard functions. We apply these models to questions in the biodemography of longevity, including proposed explanations of Gompertz hazards and mortality plateaus

    Rule-Based Cell Systems Model of Aging using Feedback Loop Motifs Mediated by Stress Responses

    Get PDF
    Investigating the complex systems dynamics of the aging process requires integration of a broad range of cellular processes describing damage and functional decline co-existing with adaptive and protective regulatory mechanisms. We evolve an integrated generic cell network to represent the connectivity of key cellular mechanisms structured into positive and negative feedback loop motifs centrally important for aging. The conceptual network is casted into a fuzzy-logic, hybrid-intelligent framework based on interaction rules assembled from a priori knowledge. Based upon a classical homeostatic representation of cellular energy metabolism, we first demonstrate how positive-feedback loops accelerate damage and decline consistent with a vicious cycle. This model is iteratively extended towards an adaptive response model by incorporating protective negative-feedback loop circuits. Time-lapse simulations of the adaptive response model uncover how transcriptional and translational changes, mediated by stress sensors NF-ÎșB and mTOR, counteract accumulating damage and dysfunction by modulating mitochondrial respiration, metabolic fluxes, biosynthesis, and autophagy, crucial for cellular survival. The model allows consideration of lifespan optimization scenarios with respect to fitness criteria using a sensitivity analysis. Our work establishes a novel extendable and scalable computational approach capable to connect tractable molecular mechanisms with cellular network dynamics underlying the emerging aging phenotype

    Re-evaluating a test of the heterogeneity explanation for mortality plateaus.

    No full text
    [Drapeau, M.D., Gass, E.K., Simison, M.D., Mueller, L.D., Rose, M.R., 2000. Testing the heterogeneity theory of late-life mortality plateaus by using cohorts of Drosophila melanogaster, Experimental Gerontology, 35 71-84.] tested, in populations of Drosophila melanogaster, a prediction of the heterogeneity explanation for mortality plateaus. They concluded that heterogeneity could not explain their results. We contend here that the statistical analysis was flawed. It was declared that there was no difference between the mortality plateaus of three different strains, on the basis of averaged outcomes. In fact, the results for the different strains were quite different. Most trials showed the expected lowering of the mortality plateaus for the flies selected for robustness, but these effects were washed out by a small number of very large opposing deviations. There is ample reason to believe that the opposing deviations are artifacts of fitting an overly restrictive hazard-rate model. When we fit more appropriate models, the evidence points toward a rejection of the null hypothesis (of identical plateaus), hence toward modest support for the heterogeneity explanation

    Effects of Competition in a Secretary Problem

    No full text
    In a novel multiplayer extension of the famous secretary problem, multiple players seek to employ secretaries from a common labour pool. Secretaries do not accept being put on hold, always accept job offers immediately, and leave the labour pool once rejected by a single player. All players have an identical preference for secretaries, and all players seek to optimize the probability of obtaining the best of all n secretaries. We find that in the Nash equilibrium, as the number, N, of players searching the labour pool grows, the optimal strategy converges to a simple function of N. For the two-player case we also compute how much players can gain through cooperation and how the optimal strategy changes under a payoff structure that promotes spite. © 2014 INFORMS
    • 

    corecore