31 research outputs found

    Measurement and Calculation of Absolute Single and Multiple Charge Exchange Cross Sections for Fe^(q+) Ions Impacting H_2O

    Get PDF
    Charge exchange (CE) plays a fundamental role in the collisions of solar- and stellar-wind ions with lunar and planetary exospheres, comets, and circumstellar clouds. Reported herein are absolute cross sections for single, double, triple, and quadruple CE of Fe^(q+) (q = 5-13) ions with H_2O at a collision energy of 7q keV. One measured value of the pentuple CE is also given for Fe^(9+) ions. An electron cyclotron resonance ion source is used to provide currents of the highly charged Fe ions. Absolute data are derived from knowledge of the target gas pressure, target path length, and incident and charge-exchanged ion currents. Experimental cross sections are compared with new results of the n-electron classical trajectory Monte Carlo approximation. The radiative and non-radiative cascades following electron transfers are approximated using scaled hydrogenic transition probabilities and scaled Auger rates. Also given are estimates of cross sections for single capture, and multiple capture followed by autoionization, as derived from the extended overbarrier model. These estimates are based on new theoretical calculations of the vertical ionization potentials of H_2O up to H_2O^(10+)

    High-precision measurements of krypton and xenon isotopes with a new static-mode quadrupole ion trap mass spectrometer

    Get PDF
    Measuring the abundance and isotopic composition of noble gases in planetary atmospheres can answer fundamental questions in cosmochemistry and comparative planetology. However, noble gases are rare elements, a feature making their measurement challenging even on Earth. Furthermore, in space applications, power consumption, volume and mass constraints on spacecraft instrument accommodations require the development of compact innovative instruments able to meet the engineering requirements of the mission while still meeting the science requirements. Here we demonstrate the ability of the quadrupole ion trap mass spectrometer (QITMS) developed at the Jet Propulsion Laboratory (Caltech, Pasadena) to measure low quantities of heavy noble gases (Kr, Xe) in static operating mode and in the absence of a buffer gas such as helium. The sensitivity reaches 10^(13) cps Torr^(−1) (about 10^(11) cps Pa^(−1)) of gas (Kr or Xe). The instrument is able to measure gas in static mode for extended periods of time (up to 48 h) enabling the acquisition of thousands of isotope ratios per measurement. Errors on isotope ratios follow predictions of the counting statistics and the instrument provides reproducible results over several days of measurements. For example, 1.7 × 10^(−10) Torr (2.3 × 10^(−8) Pa) of Kr measured continuously for 7 hours yielded a 0.6‰ precision on the ^(86)Kr/^(84)Kr ratio. Measurements of terrestrial and extraterrestrial samples reproduce values from the literature. A compact instrument based upon the QITMS design would have a sensitivity high enough to reach the precision on isotope ratios (e.g. better than 1% for ^(129,131–136)Xe/^(130)Xe ratios) necessary for a scientific payload measuring noble gases collected in the Venus atmosphere

    THESEUS decision support system for coastal risk management

    No full text
    While planning coastal risk management strategies, coastal managers need to assess risk across a range of spatial and temporal scales. GIS-based tools are one efficient way to support them in the decision making process through a scenarios analysis starting from social, economic and environmental information integrated into a common platform. However, this integration process requires a significant effort from a team of scientists in terms of a) identifying the appropriate scales and data resolution for analysing social, environmental and economic issues; b) selecting and linking an appropriate set of tools to build a coupled model; c) representing key emerging (and hence challenging) research issues, such as risk perception and social resilience in the model; d) developing multi-criteria analysis to integrate social, environmental, economic impacts; and e) accounting for the expectations of the stakeholders and therefore optimizing the opportunity for them to interact with the tool development and with the final tool itself. In this spirit, this paper presents an open-source Spatial Decision Support System developed within the THESEUS Project to help decision makers to scopeg optimal strategies to minimise coastal risks. The exploratory tool allows the users to perform an integrated coastal risk assessment, to analyse the effects of different combinations of engineering, social, economic and ecologically based mitigation options, across short (2020s), medium (2050s) and long-term (2080s) scenarios, taking into account physical and non-physical drivers, such as climate change, subsidence, population and economic growth

    High-precision measurements of krypton and xenon isotopes with a new static-mode quadrupole ion trap mass spectrometer

    No full text
    International audienceA quadrupole ion trap mass spectrometer measures precisely the abundance and isotopic composition of small amounts of noble gases

    Measurement and calculation of absolute single- and double-charge-exchange cross sections for O6+ ions at 1.17 and 2.33 keV/u impacting He and H-2

    Get PDF
    Absolute single- and double-charge-exchange cross sections for the astrophysically prominent O6+ ion with the atomic and molecular targets He and H2 are reported. These collisions give rise to x-ray emissions in the interplanetary medium, planetary atmospheres, and comets as they approach the sun. Measurements have been carried out using the Caltech Jet Propulsion Laboratory electron cyclotron resonance ion source with O6+ at energies of 1.17 and 2.33 keV/u characteristic of the slow and fast components of the solar wind. Absolute charge-exchange (CE) data are derived from knowledge of the target gas pressure, target path length, incident ion current, and charge-exchanged ion currents. These data are compared with results obtained using the n-electron classical trajectory Monte Carlo method. The radiative and Auger evolution of ion populations following one- and two-electron transfers is calculated with the time-dependent collisional-radiative code nomad using atomic data from the flexible atomic code. Calculated CE emission spectra for 100Å<λ<1400Å are reported as well and compared with experimental sublevel spectra and cross sections

    The use of J-coupling as a sole criterion to assign the total absolute stereochemistry of new pyrrolidinone class synthetic analogs, derived from S-pyroglutamic acid

    No full text
    During the synthesis of new pyrrolidinone analogs possessing biological activity it is intriguing to assign their absolute stereochemistry as it is well known that drug potency is influenced by the stereochemistry. The combination of J-coupling information with theoretical results was used in order to establish their total stereochemistry when the chiral center of the starting material has known absolute stereochemistry. The J-coupling can be used as a sole criterion for novel synthetic analogs to identify the right stereochemistry. This approach is extremely useful especially in the case of analogs whose 2D NOESY spectra cannot provide this information. Few synthetic examples are given to prove the significance of this approach. © 2016 Elsevier B.V

    THESEUS decision support system for coastal risk management

    No full text
    While planning coastal risk management strategies, coastal managers need to assess risk across a range of spatial and temporal scales. GIS-based tools are one efficient way to support them in the decision making process through a scenarios analysis starting from social, economic and environmental information integrated into a common platform. However, this integration process requires a significant effort from a team of scientists in terms of a) identifying the appropriate scales and data resolution for analysing social, environmental and economic issues; b) selecting and linking an appropriate set of tools to build a coupled model; c) representing key emerging (and hence challenging) research issues, such as risk perception and social resilience in the model; d) developing multi-criteria analysis to integrate social, environmental, economic impacts; and e) accounting for the expectations of the stakeholders and therefore optimizing the opportunity for them to interact with the tool development and with the final tool itself.In this spirit, this paper presents an open-source Spatial Decision Support System developed within the THESEUS Project to help decision makers to scopeg optimal strategies to minimise coastal risks. The exploratory tool allows the users to perform an integrated coastal risk assessment, to analyse the effects of different combinations of engineering, social, economic and ecologically based mitigation options, across short (2020s), medium (2050s) and long-term (2080s) scenarios, taking into account physical and non-physical drivers, such as climate change, subsidence, population and economic growt
    corecore