1,461 research outputs found

    A computerized Langmuir probe system

    Get PDF
    For low pressure plasmas it is important to record entire single or double Langmuir probe characteristics accurately. For plasmas with a depleted high energy tail, the accuracy of the recorded ion current plays a critical role in determining the electron temperature. Even for high density Maxwellian distributions, it is necessary to accurately model the ion current to obtain the correct electron density. Since the electron and ion current saturation values are, at best, orders of magnitude apart, a single current sensing resistor cannot provide the required resolution to accurately record these values. We present an automated, personal computer based data acquisition system for the determination of fundamental plasma properties in low pressure plasmas. The system is designed for single and double Langmuir probes, whose characteristics can be recorded over a bias voltage range of ±70 V with 12 bit resolution. The current flowing through the probes can be recorded within the range of 5 nA–100 mA. The use of a transimpedance amplifier for current sensing eliminates the requirement for traditional current sensing resistors and hence the need to correct the raw data. The large current recording range is realized through the use of a real time gain switching system in the negative feedback loop of the transimpedance amplifier

    Absorption spectrum in the wings of the potassium second resonance doublet broadened by helium

    Full text link
    We have measured the reduced absorption coefficients occurring in the wings of the potassium 4S-5P doublet lines at 404.414 nm and at 404.720 nm broadened by helium gas at pressures of several hundred Torr. At the experimental temperature of 900 K, we have detected a shoulder-like broadening feature on the blue wing of the doublet which is relatively flat between 401.8 nm and 402.8 nm and which drops off rapidly for shorter wavelengths, corresponding to absorption from the X doublet Sigma+ state to the C doublet Sigma+ state of the K-He quasimolecule. The accurate measurements of the line profiles in the present work will sharply constrain future calculations of potential energy surfaces and transition dipole moments correlating to the asymptotes He-K(5p), He-K(5s), and He-K(3d).Comment: 2 figure

    Millikelvin magnetic relaxation measurements of alpha-Fe2O3 antiferromagnetic particles

    Full text link
    In this paper we report magnetic relaxation data for antiferromagnetic alpha-Fe2O3 particles of 5 nm mean diameter in the temperature range 0.1 K to 25 K. The average spin value of these particles S=124 and the uniaxial anisotropy constant D=1.6x10^-2 K have been estimated from the experimental values of the blocking temperature and anisotropy field. The observed plateau in the magnetic viscosity from 3 K down to 100 mK agrees with the occurrence of spin tunneling from the ground state Sz = S. However, the scaling M vs Tln(nu t) is broken below 5 K, suggesting the occurrence of tunneling from excited states below this temperature.Comment: 4 pages (two columns), 4 figure

    Variability in oxidative degradation of charcoal: influence of production variables and environmental exposure

    Get PDF
    <p>Charcoal is a key component of the Black Carbon (BC) continuum, where BC is characterized as a recalcitrant, fire-derived, polyaromatic material. Charcoal is an important source of palaeoenvironmental data, and of great interest as a potential carbon sink, due to its high apparent environmental stability. However, at least some forms of charcoal are clearly susceptible to environmental alteration and degradation over relatively short timescales. Although these processes have importance for the role of charcoal in global biogeochemistry, they remain poorly understood.</p> <p>Here we present results of an investigation into the susceptibility of a range of charcoal samples to oxidative degradation in acidified potassium dichromate. The study examines both freshly-produced charcoal, and charcoal exposed to environmental conditions for up to 50,000 years. We compare the proportion of carbon present in different forms between the samples, specifically with respect to the relative chemical resistance of these forms. This was undertaken in order to improve understanding of the post-depositional diagenetic changes affecting charcoal within environmental deposits.</p> <p>A wide range in chemical compositions are apparent both within and between the sample groups. In freshly-produced charcoal, material produced at 300 °C contains carbon with more labile forms than charcoal produced at ≥400 °C, signifying a key chemical change over the 300–400 °C temperature range. Charcoal exposed to environmental depositional conditions is frequently composed of a highly carboxylated aromatic structure and contains a range of carbon fractions of varying oxidative resistance. These findings suggest that a significant number of the environmental charcoals have undergone post-depositional diagenetic alteration. Further, the data highlight the potential for the use of controlled progressive oxidative degradation as a method to characterize chemical differences between individual charcoal samples.</p&gt

    Theory of optical spectra of polar quantum wells: Temperature effects

    Full text link
    Theoretical and numerical calculations of the optical absorption spectra of excitons interacting with longitudinal-optical phonons in quasi-2D polar semiconductors are presented. In II-VI semiconductor quantum wells, exciton binding energy can be tuned on- and off-resonance with the longitudinal-optical phonon energy by varying the quantum well width. A comprehensive picture of this tunning effect on the temperature-dependent exciton absorption spectrum is derived, using the exciton Green's function formalism at finite temperature. The effective exciton-phonon interaction is included in the Bethe-Salpeter equation. Numerical results are illustrated for ZnSe-based quantum wells. At low temperatures, both a single exciton peak as well as a continuum resonance state are found in the optical absorption spectra. By contrast, at high enough temperatures, a splitting of the exciton line due to the real phonon absorption processes is predicted. Possible previous experimental observations of this splitting are discussed.Comment: 10 pages, 9 figures, to appear in Phys. Rev. B. Permanent address: [email protected]
    corecore