2,642 research outputs found

    Chandra Observations of Arp 220: The Nuclear Source

    Get PDF
    We present the first results from 60ks of observations of Arp 220 using the ACIS-S instrument on Chandra. We report the detection of several sources near the galaxy's nucleus, including a point source with a hard spectrum that is coincident with the western radio nucleus B. This point source is mildly absorbed (N_H ~ 3 x 10^22 cm^-2) and has an estimated luminosity of 4 x 10^40 erg/s. In addition, a fainter source may coincide with the eastern nucleus A. Extended hard X-ray emission in the vicinity raises the total estimated nuclear 2-10 keV X-ray luminosity to 1.2 x 10^41 erg/s, but we cannot rule out a hidden AGN behind columns exceeding 5 x 10^24 cm^-2. We also detect a peak of soft X-ray emission to the west of the nucleus, and a hard point source 2.5 kpc from the nucleus with a luminosity of 6 x 10^39 erg/s.Comment: Accepted for publication in Ap

    Chandra Observations of Arp 220: The Nuclear Source

    Get PDF
    We present the first results from 60ks of observations of Arp 220 using the ACIS-S instrument on Chandra. We report the detection of several sources near the galaxy's nucleus, including a point source with a hard spectrum that is coincident with the western radio nucleus B. This point source is mildly absorbed (N_H ~ 3 x 10^22 cm^-2) and has an estimated luminosity of 4 x 10^40 erg/s. In addition, a fainter source may coincide with the eastern nucleus A. Extended hard X-ray emission in the vicinity raises the total estimated nuclear 2-10 keV X-ray luminosity to 1.2 x 10^41 erg/s, but we cannot rule out a hidden AGN behind columns exceeding 5 x 10^24 cm^-2. We also detect a peak of soft X-ray emission to the west of the nucleus, and a hard point source 2.5 kpc from the nucleus with a luminosity of 6 x 10^39 erg/s.Comment: Accepted for publication in Ap

    The Resistive-Plate WELL with Argon mixtures - a robust gaseous radiation detector

    Full text link
    A thin single-element THGEM-based, Resistive-Plate WELL (RPWELL) detector was operated with 150 GeV/c muon and pion beams in Ne/(5%CH4_4), Ar/(5%CH4_4) and Ar/(7%CO2_2); signals were recorded with 1 cm2^2 square pads and SRS/APV25 electronics. Detection efficiency values greater than 98% were reached in all the gas mixtures, at average pad multiplicity of 1.2. The use of the 109^9{\Omega}cm resistive plate resulted in a completely discharge-free operation also in intense pion beams. The efficiency remained essentially constant at 98-99% up to fluxes of \sim104^4Hz/cm2^2, dropping by a few % when approaching 105^5 Hz/cm2^2. These results pave the way towards cost-effective, robust, efficient, large-scale detectors for a variety of applications in future particle, astro-particle and applied fields. A potential target application is digital hadron calorimetry.Comment: presented at the 2016 VIenna Conf. On instrumentation. Submitted to the Conference proceeding

    Chandra Observations of Extended X-ray Emission in Arp 220

    Full text link
    We resolve the extended X-ray emission from the prototypical ultraluminous infrared galaxy Arp 220. Extended, faint edge-brightened, soft X-ray lobes outside the optical galaxy are observed to a distance of 10 to 15 kpc on each side of the nuclear region. Bright plumes inside the optical isophotes coincide with the optical line emission and extend 11 kpc from end to end across the nucleus. The data for the plumes cannot be fit by a single temperature plasma, and display a range of temperatures from 0.2 to 1 keV. The plumes emerge from bright, diffuse circumnuclear emission in the inner 3 kpc centered on the Halpha peak, which is displaced from the radio nuclei. There is a close morphological correspondence between the Halpha and soft X-ray emission on all spatial scales. We interpret the plumes as a starburst-driven superwind, and discuss two interpretations of the emission from the lobes in the context of simulations of the merger dynamics of Arp 220.Comment: Accepted for publication in ApJ; see also astro-ph/0208477 (Paper 1

    Id1 Restrains p21 Expression to Control Endothelial Progenitor Cell Formation

    Get PDF
    Loss of Id1 in the bone marrow (BM) severely impairs tumor angiogenesis resulting in significant inhibition of tumor growth. This phenotype has been associated with the absence of circulating endothelial progenitor cells (EPCs) in the peripheral blood of Id1 mutant mice. However, the manner in which Id1 loss in the BM controls EPC generation or mobilization is largely unknown. Using genetically modified mouse models we demonstrate here that the generation of EPCs in the BM depends on the ability of Id1 to restrain the expression of its target gene p21. Through a series of cellular and functional studies we show that the increased myeloid commitment of BM stem cells and the absence of EPCs in Id1 knockout mice are associated with elevated p21 expression. Genetic ablation of p21 rescues the EPC population in the Id1 null animals, re-establishing functional BM-derived angiogenesis and restoring normal tumor growth. These results demonstrate that the restraint of p21 expression by Id1 is one key element of its activity in facilitating the generation of EPCs in the BM and highlight the critical role these cells play in tumor angiogenesis

    Adenovirus-Mediated Gene Transfer of Viral Interleukin-10 Inhibits the Immune Response to Both Alloantigen and Adenoviral Antigen

    Full text link
    Overview summary Adenoviral vectors are efficient for in vivo delivery of genes to a wide variety of tissue types, whereas the duration of expression is limited by the potent adenovirus-specific immune response directed to the infected cell. In this study, we demonstrate that adenovirus-mediated gene transfer and expression of viral interleukin-10 (vIL-10) not only prolongs murine cardiac allograft survival, but also inhibits the immune response toward adenoviral antigens, and thereby improves the persistence of the vector and extends transgene expression. These findings could be used to design a new generation of adenoviral vector that expresses both an immunosuppressive cytokine gene and another gene of interest. This strategy should have general application in many gene therapy settings other than transplantation. Nonetheless, although the efficacy of adenoviral vectors can be improved by incorporating immunosuppressive genes into the vector, there are also nonimmune mechanisms serving to limit vector gene expression.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/63260/1/hum.1997.8.11-1365.pd

    Exact Cover with light

    Full text link
    We suggest a new optical solution for solving the YES/NO version of the Exact Cover problem by using the massive parallelism of light. The idea is to build an optical device which can generate all possible solutions of the problem and then to pick the correct one. In our case the device has a graph-like representation and the light is traversing it by following the routes given by the connections between nodes. The nodes are connected by arcs in a special way which lets us to generate all possible covers (exact or not) of the given set. For selecting the correct solution we assign to each item, from the set to be covered, a special integer number. These numbers will actually represent delays induced to light when it passes through arcs. The solution is represented as a subray arriving at a certain moment in the destination node. This will tell us if an exact cover does exist or not.Comment: 20 pages, 4 figures, New Generation Computing, accepted, 200

    Solving the subset-sum problem with a light-based device

    Full text link
    We propose a special computational device which uses light rays for solving the subset-sum problem. The device has a graph-like representation and the light is traversing it by following the routes given by the connections between nodes. The nodes are connected by arcs in a special way which lets us to generate all possible subsets of the given set. To each arc we assign either a number from the given set or a predefined constant. When the light is passing through an arc it is delayed by the amount of time indicated by the number placed in that arc. At the destination node we will check if there is a ray whose total delay is equal to the target value of the subset sum problem (plus some constants).Comment: 14 pages, 6 figures, Natural Computing, 200

    The Multitude of Unresolved Continuum Sources at 1.6 microns in Hubble Space Telescope images of Seyfert Galaxies

    Get PDF
    We examine 112 Seyfert galaxies observed by the Hubble Space Telescope (HST) at 1.6 microns. We find that ~50% of the Seyfert 2.0 galaxies which are part of the Revised Shapeley-Ames (RSA) Catalog or the CfA redshift sample contain unresolved continuum sources at 1.6 microns. All but a couple of the Seyfert 1.0-1.9 galaxies display unresolved continuum sources. The unresolved sources have fluxes of order a mJy, near-infrared luminosities of order 10^41 erg/s and absolute magnitudes M_H ~-16. Comparison non-Seyfert galaxies from the RSA Catalog display significantly fewer (~20%), somewhat lower luminosity nuclear sources, which could be due to compact star clusters. We find that the luminosities of the unresolved Seyfert 1.0-1.9 sources at 1.6 microns are correlated with [OIII] 5007A and hard X-ray luminosities, implying that these sources are non-stellar. Assuming a spectral energy distribution similar to that of a Seyfert 2 galaxy, we estimate that a few percent of local spiral galaxies contain black holes emitting as Seyferts at a moderate fraction, 10^-1 to 10^-4, of their Eddington luminosities. With increasing Seyfert type the fraction of unresolved sources detected at 1.6 microns and the ratio of 1.6 microns to [OIII] fluxes tend to decrease. These trends are consistent with the unification model for Seyfert 1 and 2 galaxies.Comment: accepted by Ap

    The Variability of Seyfert 1.8 and 1.9 Galaxies at 1.6 microns

    Get PDF
    We present a study of Seyfert 1.5-2.0 galaxies observed at two epochs with the Hubble Space Telescope (HST) at 1.6 microns. We find that unresolved nuclear emission from 9 of 14 nuclei varies at the level of 10-40% on timescales of 0.7-14 months, depending upon the galaxy. A control sample of Seyfert galaxies lacking unresolved sources and galaxies lacking Seyfert nuclei show less than 3% instrumental variation in equivalent aperture measurements. This proves that the unresolved sources are non-stellar and associated with the central pc of active galactic nuclei. Unresolved sources in Seyfert 1.8 and 1.9 galaxies are not usually detected in HST optical surveys, however high angular resolution infrared observations will provide a way to measure time delays in these galaxies.Comment: accepted by ApJLetters (emulateapj latex
    corecore