839 research outputs found

    De-risking of Green Investments through a Green Bond Market – Empirics and a Dynamic Model

    Get PDF
    A substantial increase of green investments is still required to reach the Paris Agreement’s emission targets. Yet, capital markets to expedite green invest-ments are generically constrained. Literature has shown that governments could de-risk such investments. Empirical beta pricing and yield estimates reveal some public involvement in the green bonds market, especially for long ma-turity bonds. We provide empirical evidence that Governments and Multilateral organizations can de-risk green investments by supporting the issuance of green bonds in contrast to private green bonds - that show higher yields, volatility and beta prices - and conventional energy bonds, that are more volatile due to oil price variations. Since lower betas also mean lower capital costs, we use those empirical results and run a dynamic model with two types of firms, modeling the economic behavior of innovators (renewable energy firms) and incumbents (fos-sil fuel firms). The simulations of our model show that de-risked interest rates help to phase in renewable energy firms in the market and avoid a sharp debt increase. However, when the new entrants carry negative pay-offs for a longer time, it might not be sufficient to keep the debt low and to avoid a shake-out in the market. Subsidies and carbon taxation can complement the role of the de-risked interest rates and expedite the energy transition. Beside deterministic model variants, we also explore a stochastic version of the model

    Anderson-Hubbard model with box disorder: Statistical dynamical mean-field theory investigation

    Full text link
    Strongly correlated electrons with box disorder in high-dimensional lattices are investigated. We apply the statistical dynamical mean-field theory, which treats local correlations non-perturbatively. The incorporation of a finite lattice connectivity allows for the detection of disorder-induced localization via the probability distribution function of the local density of states. We obtain a complete paramagnetic ground state phase diagram and find correlation-induced as well as disorder-induced metal-insulator transitions. Our results qualitatively confirm predictions obtained by typical medium theory. Moreover, we find that the probability distribution function of the local density of states in the metallic phase strongly deviates from a log-normal distribution as found for the non-interacting case.Comment: 13 pages, 15 figures, published versio

    Localization of correlated fermions in optical lattices with speckle disorder

    Full text link
    Strongly correlated fermions in three- and two-dimensional optical lattices with experimentally realistic speckle disorder are investigated. We extend and apply the statistical dynamical mean-field theory, which treats local correlations non-perturbatively, to incorporate on-site and hopping-type randomness on equal footing. Localization due to disorder is detected via the probability distribution function of the local density of states. We obtain a complete paramagnetic ground state phase diagram for experimentally realistic parameters and find a strong suppression of the correlation-induced metal insulator transition due to disorder. Our results indicate that the Anderson-Mott and the Mott insulator are not continuously connected due to the specific character of speckle disorder. Furthermore, we discuss the effect of finite temperature on the single-particle spectral function.Comment: 12 pages, 16 figures, published versio

    The performance of practitioners conducting facial comparisons on images of children across age

    Get PDF
    Published: November 19, 2019Determining the identity of children is critical to aid in the fight against child exploitation, as well as for passport control and visa issuance purposes. Facial image comparison is one method that may be used to determine identity. Due to the substantial amount of facial growth that occurs in childhood, it is critical to understand facial image comparison performance across both chronological age (the age of the child), and age variation (the age difference between images). In this study we examined the performance of 120 facial comparison practitioners from a government agency on a dataset of 23,760 image pairs selected from the agency's own database of controlled, operational images. Each chronological age in childhood (0-17 years) and age variations ranging from 0-10 years were examined. Practitioner performance was found to vary considerably across childhood, and depended on whether the pairs were mated (same child) or non-mated (different child). Overall, practitioners were more accurate and confident with image pairs containing older children, and also more accurate and confident with smaller age variations. Chronological age impacted on accuracy with mated pairs, but age variation did not. In contrast, both age and age variation impacted on accuracy with non-mated pairs. These differences in performance show that changes in the face throughout childhood have a significant impact on practitioner performance. We propose that improvements in accuracy may be achievable with a better understanding of which facial features are most appropriate to compare across childhood, and adjusting training and development programs accordingly.Dana Michalski, Rebecca Heyer, Carolyn Semmle

    Ocean Model Formulation Influences Transient Climate Response

    Get PDF
    The transient climate response (TCR) is 20% higher in the Alfred Wegener Institute Climate Model (AWI-CM) compared to the Max Planck Institute Earth System Model (MPI-ESM) whereas the equilibrium climate sensitivity (ECS) is by up to 10% higher in AWI-CM. These results are largely independent of the two considered model resolutions for each model. The two coupled CMIP6 models share the same atmosphere-land component ECHAM6.3 developed at the Max Planck Institute for Meteorology (MPI-M). However, ECHAM6.3 is coupled to two different ocean models, namely the MPIOM sea ice-ocean model developed at MPI-M and the FESOM sea ice-ocean model developed at the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI). A reason for the different TCR is related to ocean heat uptake in response to greenhouse gas forcing. Specifically, AWI-CM simulations show stronger surface heating than MPI-ESM simulations while the latter accumulate more heat in the deeper ocean. The vertically integrated ocean heat content is increasing slower in AWI-CM model configurations compared to MPI-ESM model configurations in the high latitudes. Weaker vertical mixing in AWI-CM model configurations compared to MPI-ESM model configurations seems to be key for these differences. The strongest difference in vertical ocean mixing occurs inside the Weddell and Ross Gyres and the northern North Atlantic. Over the North Atlantic, these differences materialize in a lack of a warming hole in AWI-CM model configurations and the presence of a warming hole in MPI-ESM model configurations. All these differences occur largely independent of the considered model resolutions

    Frequency, Local Dynamics, and Genomic Characteristics of ESBL-Producing Escherichia coli Isolated From Specimens of Hospitalized Horses

    Get PDF
    Previous research identified veterinary clinics as hotspots with respect to accumulation and spread of multidrug resistant extended-spectrum β-lactamase (ESBL)-producing Escherichia coli (EC). Therefore, promoting the prudent use of antibiotics to decrease selective pressure in that particular clinical environment is preferable to enhance biosecurity for animal patients and hospital staff. Accordingly, this study comparatively investigated the impact of two distinct perioperative antibiotic prophylaxis (PAP) regimens (short-term versus prolonged) on ESBL-EC carriage of horses subjected to colic surgery. While all horses received a combination of penicillin/gentamicin (P/G) as PAP, they were assigned to either the “single-shot group” (SSG) or the conventional “5-day group” (5DG). Fecal samples collected on arrival (t0), on the 3rd (t1) and on the 10th day after surgery (t2) were screened for ESBL-EC. All isolates were further investigated using whole genome sequences. In total, 81 of 98 horses met the inclusion criteria for this study. ESBL-EC identified in samples available at t0, t1 and t2 were 4.8% (SSG) and 9.7% (5DG), 37% (SSG) and 47.2% (5DG) as well as 55.6% (SSG) and 56.8% (5DG), respectively. Regardless of the P/G PAP regimen, horses were 9.12 times (95% CI 2.79–29.7) more likely to carry ESBL-EC at t1 compared to t0 (p < 0.001) and 15.64 times (95% CI 4.57–53.55) more likely to carry ESBL-EC at t2 compared to t0 (p < 0.001). ESBL-EC belonging to sequence type (ST) 10, ST86, ST641, and ST410 were the most prevalent lineages, with blaCTX–M–1 (60%) being the dominant ESBL gene. A close spatio-temporal relationship between isolates sharing a particular ST was revealed by genome analysis, strongly indicating local spread. Consequently, hospitalization itself has a strong impact on ESBL-EC isolation rates in horses, possibly masking differences between distinct PAP regimens. The results of this study reveal accumulation and spread of multi-drug resistant ESBL-EC among horses subjected to colic surgery with different P/G PAP regimens, challenging the local hygiene management system and work-place safety of veterinary staff. Moreover, the predominance of particular ESBL-EC lineages in clinics providing health care for horses needs further investigation.Peer Reviewe

    Correlated electrons in the presence of disorder

    Full text link
    Several new aspects of the subtle interplay between electronic correlations and disorder are reviewed. First, the dynamical mean-field theory (DMFT)together with the geometrically averaged ("typical") local density of states is employed to compute the ground state phase diagram of the Anderson-Hubbard model at half-filling. This non-perturbative approach is sensitive to Anderson localization on the one-particle level and hence can detect correlated metallic, Mott insulating and Anderson insulating phases and can also describe the competition between Anderson localization and antiferromagnetism. Second, we investigate the effect of binary alloy disorder on ferromagnetism in materials with ff-electrons described by the periodic Anderson model. A drastic enhancement of the Curie temperature TcT_c caused by an increase of the local ff-moments in the presence of disordered conduction electrons is discovered and explained.Comment: 17 pages, 7 figures, final version, typos corrected, references updated, submitted to Eur. Phys. J. for publication in the Special Topics volume "Cooperative Phenomena in Solids: Metal-Insulator Transitions and Ordering of Microscopic Degrees of Freedom

    Search for Bs0γγB_{s}^{0}\rightarrow\gamma\gamma and a measurement of the branching fraction for Bs0ϕγB_{s}^{0}\rightarrow\phi\gamma

    Full text link
    We search for the decay Bs0γγB_{s}^{0}\rightarrow\gamma\gamma and measure the branching fraction for Bs0ϕγB_{s}^{0}\rightarrow\phi\gamma using 121.4~fb1\textrm{fb}^{-1} of data collected at the Υ(5S)\Upsilon(\mathrm{5}S) resonance with the Belle detector at the KEKB asymmetric-energy e+ee^{+}e^{-} collider. The Bs0ϕγB_{s}^{0}\rightarrow\phi\gamma branching fraction is measured to be (3.6±0.5(stat.)±0.3(syst.)±0.6(fs))×105(3.6 \pm 0.5 (\mathrm{stat.}) \pm 0.3 (\mathrm{syst.}) \pm 0.6 (f_{s})) \times 10^{-5}, where fsf_{s} is the fraction of Bs()Bˉs()B_{s}^{(*)}\bar{B}_{s}^{(*)} in bbˉb\bar{b} events. Our result is in good agreement with the theoretical predictions as well as with a recent measurement from LHCb. We observe no statistically significant signal for the decay Bs0γγB_{s}^{0}\rightarrow\gamma\gamma and set a 90%90\% confidence-level upper limit on its branching fraction at 3.1×106 3.1 \times 10^{-6}. This constitutes a significant improvement over the previous result.Comment: 6 pages, 3 figure

    Search for a dark vector gauge boson decaying to π+π\pi^+ \pi^- using ηπ+πγ\eta \rightarrow \pi^+\pi^- \gamma decays

    Full text link
    We report a search for a dark vector gauge boson UU^\prime that couples to quarks in the decay chain D+D0π+,D0KS0η,ηUγD^{*+} \to D^0 \pi^+, D^0 \to K^0_S \eta, \eta \to U^\prime \gamma, Uπ+πU^\prime \to \pi^+ \pi^-. No signal is found and we set a mass-dependent limit on the baryonic fine structure constant of 10310210^{-3} - 10^{-2} in the UU^\prime mass range of 290 to 520 MeV/c2c^2. This analysis is based on a data sample of 976 fb1^{-1} collected by the Belle experiment at the KEKB asymmetric-energy e+ee^+e^- collider.Comment: 6 pages, 4 figure
    corecore