1,902 research outputs found

    Three-body forces and proton-rich nuclei

    Full text link
    We present the first study of three-nucleon (3N) forces for proton-rich nuclei along the N=8 and N=20 isotones. Our results for the ground-state energies and proton separation energies are in very good agreement with experiment where available, and with the empirical isobaric multiplet mass equation. We predict the spectra for all N=8 and N=20 isotones to the proton dripline, which agree well with experiment for 18Ne, 19Na, 20Mg and 42Ti. In all other cases, we provide first predictions based on nuclear forces. Our results are also very promising for studying isospin symmetry breaking in medium-mass nuclei based on chiral effective field theory.Comment: 5 pages, 4 figures, minor changes, published versio

    Low-momentum interactions for nuclei

    Full text link
    We show how the renormalization group is used to construct a low-momentum nucleon-nucleon interaction V_{low k}, which unifies all potential models used in nuclear structure calculations. V_{low k} can be directly applied to the nuclear shell model or to nucleonic matter without a G matrix resummation. It is argued that V_{low k} parameterizes a high-order chiral effective field theory two-nucleon force. We use cutoff dependence as a tool to assess the error in the truncation of nuclear forces to two-nucleon interactions and introduce a low-momentum three-nucleon force, which regulates A=3,4 binding energies. The adjusted three-nucleon interaction is perturbative for small cutoffs. In contrast to other precision interactions, the error due to missing many-body forces can be estimated, when V_{low k} and the corresponding three-nucleon force are used in nuclear structure calculations and the cutoff is varied.Comment: 10 pages, 5 figures, talk at INT workshop on Nuclear Forces and the Quantum Many-Body Problem, Seattle, October 200

    Nuclear forces and their impact on neutron-rich nuclei and neutron-rich matter

    Full text link
    We review the impact of nuclear forces on matter at neutron-rich extremes. Recent results have shown that neutron-rich nuclei become increasingly sensitive to three-nucleon forces, which are at the forefront of theoretical developments based on effective field theories of quantum chromodynamics. This includes the formation of shell structure, the spectroscopy of exotic nuclei, and the location of the neutron dripline. Nuclear forces also constrain the properties of neutron-rich matter, including the neutron skin, the symmetry energy, and the structure of neutron stars. We first review our understanding of three-nucleon forces and show how chiral effective field theory makes unique predictions for many-body forces. Then, we survey results with three-nucleon forces in neutron-rich oxygen and calcium isotopes and neutron-rich matter, which have been explored with a range of many-body methods. Three-nucleon forces therefore provide an exciting link between theoretical, experimental and observational nuclear physics frontiers.Comment: 28 pages, 13 figures, 1 tabl

    Three-body forces and shell structure in calcium isotopes

    Full text link
    Understanding and predicting the formation of shell structure from nuclear forces is a central challenge for nuclear physics. While the magic numbers N=2,8,20 are generally well understood, N=28 is the first standard magic number that is not reproduced in microscopic theories with two-nucleon forces. In this Letter, we show that three-nucleon forces give rise to repulsive interactions between two valence neutrons that are key to explain 48Ca as a magic nucleus, with a high 2+ excitation energy and a concentrated magnetic dipole transition strength. The repulsive three-nucleon mechanism improves the agreement with experimental binding energies.Comment: 5 pages, 4 figures; improved version and added coupled-cluster benchmark; published versio

    Three-nucleon forces and spectroscopy of neutron-rich calcium isotopes

    Full text link
    We study excited-state properties of neutron-rich calcium isotopes based on chiral two- and three-nucleon interactions. We first discuss the details of our many-body framework, investigate convergence properties, and for two-nucleon interactions benchmark against coupled-cluster calculations. We then focus on the spectroscopy of 47-56Ca, finding that with both 3N forces and an extended pfg9/2 valence space, we obtain a good level of agreement with experiment. We also study electromagnetic transitions and find that experimental data are well described by our calculations. In addition, we provide predictions for unexplored properties of neutron-rich calcium isotopes.Comment: 15 pages, 22 figures, published versio

    Dispersion and decay of collective modes in neutron star cores

    Full text link
    We calculate the frequencies of collective modes of neutrons, protons and electrons in the outer core of neutron stars. The neutrons and protons are treated in a hydrodynamic approximation and the electrons are regarded as collisionless. The coupling of the nucleons to the electrons leads to Landau damping of the collective modes and to significant dispersion of the low-lying modes. We investigate the sensitivity of the mode frequencies to the strength of entrainment between neutrons and protons, which is not well characterized. The contribution of collective modes to the thermal conductivity is evaluated.Comment: 10 pages, 4 figure

    Three-body forces and the limit of oxygen isotopes

    Full text link
    The limit of neutron-rich nuclei, the neutron drip-line, evolves regularly from light to medium-mass nuclei except for a striking anomaly in the oxygen isotopes. This anomaly is not reproduced in shell-model calculations derived from microscopic two-nucleon forces. Here, we present the first microscopic explanation of the oxygen anomaly based on three-nucleon forces that have been established in few-body systems. This leads to repulsive contributions to the interactions among excess neutrons that change the location of the neutron drip-line from 28^{28}O to the experimentally observed 24^{24}O. Since the mechanism is robust and general, our findings impact the prediction of the most neutron-rich nuclei and the synthesis of heavy elements in neutron-rich environments.Comment: 4 pages, 4 figures, to be published in PR

    Cooling of Akmal-Pandharipande-Ravenhall neutron star models

    Full text link
    We study the cooling of superfluid neutron stars whose cores consist of nucleon matter with the Akmal-Pandharipande-Ravenhall equation of state. This equation of state opens the powerful direct Urca process of neutrino emission in the interior of most massive neutron stars. Extending our previous studies (Gusakov et al. 2004a, Kaminker et al. 2005), we employ phenomenological density-dependent critical temperatures T_{cp}(\rho) of strong singlet-state proton pairing (with the maximum T_{cp}^{max} \sim 7e9 K in the outer stellar core) and T_{cnt}(\rho) of moderate triplet-state neutron pairing (with the maximum T_{cnt}^{max} \sim 6e8 K in the inner core). Choosing properly the position of T_{cnt}^{max} we can obtain a representative class of massive neutron stars whose cooling is intermediate between the cooling enhanced by the neutrino emission due to Cooper pairing of neutrons in the absence of the direct Urca process and the very fast cooling provided by the direct Urca process non-suppressed by superfluidity.Comment: 9 pages, 6 figures; accepted for publication in MNRA

    Exploring sd-shell nuclei from two- and three-nucleon interactions with realistic saturation properties

    Full text link
    We study ground- and excited-state properties of all sd-shell nuclei with neutron and proton numbers 8 <= N,Z <= 20, based on a set of low-resolution two- and three-nucleon interactions that predict realistic saturation properties of nuclear matter. We focus on estimating the theoretical uncertainties due to variation of the resolution scale, the low-energy couplings, as well as from the many-body method. The experimental two-neutron and two-proton separation energies are reasonably well reproduced, with an uncertainty range of about 5 MeV. The first excited 2+ energies also show overall agreement, with a more narrow uncertainty range of about 500 keV. In most cases, this range is dominated by the uncertainties in the Hamiltonian.Comment: 6 pages, 4 figure
    corecore