136 research outputs found

    Konus-Wind and Helicon-Coronas-F Observations of Solar Flares

    Full text link
    Results of solar flare observations obtained in the Konus-Wind experiment from November, 1994 to December, 2013 and in the Helicon Coronas-F experiment during its operation from 2001 to 2005, are presented. For the periods indicated Konus-Wind detected in the trigger mode 834 solar flares, and Helicon-Coronas-F detected more than 300 solar flares. A description of the instruments and data processing techniques are given. As an example, the analysis of the spectral evolution of the flares SOL2012-11-08T02:19 (M 1.7) and SOL2002-03-10T01:34 (C5.1) is made with the Konus-Wind data and the flare SOL2003-10-26T06:11 (X1.2) is analyzed in the 2.223 MeV deuterium line with the Helicon-Coronas-F data.Comment: Published version. A list of the Konus-Wind solar flare triggers and figures of their time profiles are available at http://www.ioffe.ru/LEA/Solar

    The second Konus-Wind catalog of short gamma-ray bursts

    Full text link
    In this catalog, we present the results of a systematic study of 295 short gamma-ray bursts (GRBs) detected by Konus-Wind (KW) from 1994 to 2010. From the temporal and spectral analyses of the sample, we provide the burst durations, the spectral lags, the results of spectral fits with three model functions, the total energy fluences and the peak energy fluxes of the bursts. We discuss evidence found for an additional power-law spectral component and the presence of extended emission in a fraction of the KW short GRBs. Finally, we consider the results obtained in the context of the Type I (merger-origin) / Type II (collapsar-origin) classifications.Comment: Accepted to the Astrophysical Journal Supplement Series (7 Figures, 8 Tables

    A peculiar hard X-ray counterpart of a Galactic fast radio burst

    Full text link
    Fast radio bursts are bright, millisecond-scale radio flashes of yet unknown physical origin. Recently, their extragalactic nature has been demonstrated and an increasing number of the sources have been found to repeat. Young, highly magnetized, isolated neutron stars - magnetars - have been suggested as the most promising candidates for fast radio burst progenitors owing to their energetics and high X-ray flaring activity. Here we report the detection with the Konus-Wind of a hard X-ray event of April 28, 2020, temporarily coincident with a bright, two-peak radio burst from the Galactic magnetar SGR~1935+2154 with properties remarkably similar to those of fast radio bursts. We show that two peaks of the double-peaked X-ray burst coincide in time with the radio peaks, confirming that the X-ray and radio emission most likely have a common origin. Thus, this is the first simultaneous detection of a fast radio burst from a Galactic magnetar and its high-energy counterpart. The total energy emitted in X-rays in this burst is typical of bright short magnetar bursts, but an unusual hardness of its energy spectrum strongly distinguish the April 28 event among multiple "ordinary" flares detected from SGR~1935+2154 previously. This, and a recent non-detection of radio emission from about one hundred typical soft bursts from SGR 1935+2154 favors the idea that bright, FRB-like magnetar signals are associated with rare, hard-spectrum X-ray bursts, which implied rate (\sim 0.04 yr1^{-1} magnetar1^{-1}) appears consistent with the rate estimate of SGR 1935+2154-like radio bursts (0.007 - 0.04 yr1^{-1} magnetar1^{-1}).Comment: 25 pages, 6 figures, 4 table

    The Konus-Wind catalog of gamma-ray bursts with known redshifts. II. Waiting mode bursts simultaneously detected by Swift/BAT

    Full text link
    In the Second part of The Konus-Wind Catalog of Gamma-Ray Bursts with Known Redshifts (first part: Tsvetkova et al. 2017; T17), we present the results of a systematic study of gamma-ray bursts (GRBs) with reliable redshift estimates detected simultaneously by the Konus-Wind (KW) experiment (in the waiting mode) and by the Swift/BAT (BAT) telescope during the period from 2005 January to the end of 2018. By taking advantage of the high sensitivity of BAT and the wide spectral band of KW we were able to constrain the peak spectral energies, the broadband energy fluences, and the peak fluxes for the joint KW-BAT sample of 167 weak, relatively soft GRBs (including four short bursts). Based on the GRB redshifts, which span the range 0.04z9.40.04 \leq z \leq 9.4, we estimate the rest-frame, isotropic-equivalent energy, and peak luminosity. For 14 GRBs with reasonably constrained jet breaks, we provide the collimation-corrected values of the energetics. This work extends the sample of KW GRBs with known redshifts to 338 GRBs, the largest set of cosmological GRBs studied to date over a broad energy band. With the full KW sample, accounting for the instrumental bias, we explore GRB rest-frame properties, including hardness-intensity correlations, GRB luminosity evolution, luminosity and isotropic-energy functions, and the evolution of the GRB formation rate, which we find to be in general agreement with those reported in T17 and other previous studies.Comment: Accepted for publication in ApJ; 41 pages, 5 figures, 7 tables. References in Table 5 fixed compared with the initial submission. See also arXiv:1710.08746 for Part I of the Catalo

    First intermediate flare from SGR 1935+2154

    Get PDF
    The first intermediate flare from newly discovered SGR 1935+2154 was detected and localized by four Interplanetary network (IPN) spacecraft on 2015 April 12. Among the observing instruments, only Konus- Wind gamma-ray burst spectrometer (KW) was able to measure high-resolution light curves and multi-channel energy spectra of the flare. We report on the results of temporal and spectral analyses of the KW data, the flare energetics, a search for Quasi-Periodic Oscillations in the light curve, and, finally, discuss the source distance estimate based on the distribution of double blackbody spectral fit parameter

    KW-Sun: The Konus-Wind Solar Flare Database in Hard X-ray and Soft Gamma-ray Ranges

    Get PDF
    We present a database of solar flares registered by the Konus-Wind instrument during more than 27 years of operation, from 1994 November to now (2022 June). The constantly updated database (hereafter KW-Sun) contains over 1000 events detected in the instrument's triggered mode and is accessible online at http://www.ioffe.ru/LEA/kwsun/. For each flare, the database provides time-resolved energy spectra in energy range from ~20 keV to ~15 MeV in FITS format along with count rate light curves in three wide energy bands G1 (~20-80 keV), G2 (~80-300 keV), and G3 (~300-1200 keV) with high time resolution (down to 16 ms) in ASCII and IDL SAV formats. This article focuses on the instrument capabilities in the context of solar observations, the structure of the KW-Sun data and their intended usage. The presented homogeneous data set obtained in the broad energy range with high temporal resolution during more than two full solar cycles is beneficial for both statistical and case studies as well as a source of context data for solar flare research.Comment: 10 pages, 6 figures, 1 table. Accepted for publication in ApJ

    GROND coverage of the main peak of Gamma-Ray Burst 130925A

    Get PDF
    Prompt or early optical emission in gamma-ray bursts is notoriously difficult to measure, and observations of the dozen cases show a large variety of properties. Yet, such early emission promises to help us achieve a better understanding of the GRB emission process(es). We performed dedicated observations of the ultra-long duration (T90 about 7000 s) GRB 130925A in the optical/near-infrared with the 7-channel "Gamma-Ray Burst Optical and Near-infrared Detector" (GROND) at the 2.2m MPG/ESO telescope. We detect an optical/NIR flare with an amplitude of nearly 2 mag which is delayed with respect to the keV--MeV prompt emission by about 300--400 s. The decay time of this flare is shorter than the duration of the flare (500 s) or its delay. While we cannot offer a straightforward explanation, we discuss the implications of the flare properties and suggest ways toward understanding it.Comment: 9 pages, 9 figures, accepted for publ. in A&
    corecore