245 research outputs found
Biologically Informed Individual-Based Network Model for Rift Valley Fever in the US and Evaluation of Mitigation Strategies
Citation: Scoglio, C. M., Bosca, C., Riad, M. H., Sahneh, F. D., Britch, S. C., Cohnstaedt, L. W., & Linthicum, K. J. (2016). Biologically Informed Individual-Based Network Model for Rift Valley Fever in the US and Evaluation of Mitigation Strategies. Plos One, 11(9), 26. doi:10.1371/journal.pone.0162759Rift Valley fever (RVF) is a zoonotic disease endemic in sub-Saharan Africa with periodic outbreaks in human and animal populations. Mosquitoes are the primary disease vectors; however, Rift Valley fever virus (RVFV) can also spread by direct contact with infected tissues. The transmission cycle is complex, involving humans, livestock, and multiple species of mosquitoes. The epidemiology of RVFV in endemic areas is strongly affected by climatic conditions and environmental variables. In this research, we adapt and use a network-based modeling framework to simulate the transmission of RVFV among hypothetical cattle operations in Kansas, US. Our model considers geo-located livestock populations at the individual level while incorporating the role of mosquito populations and the environment at a coarse resolution. Extensive simulations show the flexibility of our modeling framework when applied to specific scenarios to quantitatively evaluate the efficacy of mosquito control and livestock movement regulations in reducing the extent and intensity of RVF outbreaks in the United States
Crystal Structure of Monoclonal 6B5 Fab Complexed with Phencyclidine
The crystal structure of monoclonal antibody (mAb) 6B5 Fab fragment complexed with 1-(1-phenylcyclohexyl)piperidine (PCP or phencyclidine) was determined at 2.2-A resolution. 6B5 was originally produced from a mouse immunized with a phencyclidine analogue hapten 5-[N-(1'phenylcyclohexyl)amino]pentanoic acid conjugated to bovine serum albumin. This mAb was selected for further study because of its high affinity (Kd = 2 x 10(-9) M/liter) for PCP and usefulness in reversing PCP-induced central nervous system toxicity in laboratory animals. The dominant feature of the 6B5 Fab.PCP complex is the deep binding site and hydrophobic nature of the interaction. The ligand binding pocket of 6B5 Fab has numerous aromatic side chains, as compared with other known Fab structures. The most notable feature of the binding site is a Trp at position 97H (H-chain), and the side chain of this residue appears to act as a hydrophobic umbrella on the ligand in the antigen binding pocket. There are only two other known Fabs found with a Trp at the 97H position in complementarity determining region (CDR) H3, but they do not play a major role in the interaction with their respective antigens; in both Fab TE33 and R6.5 the Trp 97H side chain is positioned away from the bound antigen. Comparison of the CDR residues of 6B5 with other Fab structures with similar CDR sizes and amino acid compositions reveals a number of important patterns of residue substitutions that appear to be critical for specific PCP ligand interactions
A Spatial Analysis of Rift Valley Fever Virus Seropositivity in Domestic Ruminants in Tanzania
Rift Valley fever (RVF) is an acute arthropod-borne viral zoonotic disease primarily occurring in Africa. Since RVF-like disease was reported in Tanzania in 1930, outbreaks of the disease have been reported mainly from the eastern ecosystem of the Great Rift Valley. This cross-sectional study was carried out to describe the variation in RVF virus (RVFV) seropositivity in domestic ruminants between selected villages in the eastern and western Rift Valley ecosystems in Tanzania, and identify potential risk factors. Three study villages were purposively selected from each of the two Rift Valley ecosystems. Serum samples from randomly selected domestic ruminants (n = 1,435) were tested for the presence of specific immunoglobulin G (IgG) and M (IgM), using RVF enzyme-linked immunosorbent assay methods. Mixed effects logistic regression modelling was used to investigate the association between potential risk factors and RVFV seropositivity. The overall RVFV seroprevalence (n = 1,435) in domestic ruminants was 25.8% and species specific seroprevalence was 29.7%, 27.7% and 22.0% in sheep (n = 148), cattle (n = 756) and goats (n = 531), respectively. The odds of seropositivity were significantly higher in animals sampled from the villages in the eastern than those in the western Rift Valley ecosystem (OR = 1.88, CI: 1.41, 2.51; p<0.001), in animals sampled from villages with soils of good than those with soils of poor water holding capacity (OR = 1.97; 95% CI: 1.58, 3.02; p< 0.001), and in animals which had been introduced than in animals born within the herd (OR = 5.08, CI: 2.74, 9.44; p< 0.001). Compared with animals aged 1-2 years, those aged 3 and 4-5 years had 3.40 (CI: 2.49, 4.64; p< 0.001) and 3.31 (CI: 2.27, 4.82, p< 0.001) times the odds of seropositivity. The findings confirm exposure to RVFV in all the study villages, but with a higher prevalence in the study villages from the eastern Rift Valley ecosystem
Spatial heterogeneity of habitat suitability for Rift Valley fever occurrence in Tanzania: an ecological niche modelling approach
Despite the long history of Rift Valley fever (RVF) in Tanzania, extent of its suitable habitat in the country remains unclear. In this study we investigated potential effects of temperature, precipitation, elevation, soil type, livestock density, rainfall pattern, proximity to wild animals, protected areas and forest on the habitat suitability for RVF occurrence in Tanzania. Presence-only records of 193 RVF outbreak locations from 1930 to 2007 together with potential predictor variables were used to model and map the suitable habitats for RVF occurrence using ecological niche modelling. Ground-truthing of the model outputs was conducted by comparing the levels of RVF virus specific antibodies in cattle, sheep and goats sampled from locations in Tanzania that presented different predicted habitat suitability values. Habitat suitability values for RVF occurrence were higher in the northern and central-eastern regions of Tanzania than the rest of the regions in the country. Soil type and precipitation of the wettest quarter contributed equally to habitat suitability (32.4% each), followed by livestock density (25.9%) and rainfall pattern (9.3%). Ground-truthing of model outputs revealed that the odds of an animal being seropositive for RVFV when sampled from areas predicted to be most suitable for RVF occurrence were twice the odds of an animal sampled from areas least suitable for RVF occurrence (95% CI: 1.43, 2.76, p < 0.001). The regions in the northern and central-eastern Tanzania were more suitable for RVF occurrence than the rest of the regions in the country. The modelled suitable habitat is characterised by impermeable soils, moderate precipitation in the wettest quarter, high livestock density and a bimodal rainfall pattern. The findings of this study should provide guidance for the design of appropriate RVF surveillance, prevention and control strategies which target areas with these characteristics
Integration of decision support systems to improve decision support performance
Decision support system (DSS) is a well-established research and development area. Traditional isolated, stand-alone DSS has been recently facing new challenges. In order to improve the performance of DSS to meet the challenges, research has been actively carried out to develop integrated decision support systems (IDSS). This paper reviews the current research efforts with regard to the development of IDSS. The focus of the paper is on the integration aspect for IDSS through multiple perspectives, and the technologies that support this integration. More than 100 papers and software systems are discussed. Current research efforts and the development status of IDSS are explained, compared and classified. In addition, future trends and challenges in integration are outlined. The paper concludes that by addressing integration, better support will be provided to decision makers, with the expectation of both better decisions and improved decision making processes
A hierarchical network approach for modeling Rift Valley fever epidemics with applications in North America
Rift Valley fever is a vector-borne zoonotic disease which causes high
morbidity and mortality in livestock. In the event Rift Valley fever virus is
introduced to the United States or other non-endemic areas, understanding the
potential patterns of spread and the areas at risk based on disease vectors and
hosts will be vital for developing mitigation strategies. Presented here is a
general network-based mathematical model of Rift Valley fever. Given a lack of
empirical data on disease vector species and their vector competence, this
discrete time epidemic model uses stochastic parameters following several PERT
distributions to model the dynamic interactions between hosts and likely North
American mosquito vectors in dispersed geographic areas. Spatial effects and
climate factors are also addressed in the model. The model is applied to a
large directed asymmetric network of 3,621 nodes based on actual farms to
examine a hypothetical introduction to some counties of Texas, an important
ranching area in the United States of America (U.S.A.). The nodes of the
networks represent livestock farms, livestock markets, and feedlots, and the
links represent cattle movements and mosquito diffusion between different
nodes. Cattle and mosquito (Aedes and Culex) populations are treated with
different contact networks to assess virus propagation. Rift Valley fever virus
spread is assessed under various initial infection conditions (infected
mosquito eggs, adults or cattle). A surprising trend is fewer initial
infectious organisms result in a longer delay before a larger and more
prolonged outbreak. The delay is likely caused by a lack of herd immunity while
the infections expands geographically before becoming an epidemic involving
many dispersed farms and animals almost simultaneously
High Seroprevalence of Rift Valley Fever and Evidence for Endemic Circulation in Mbeya Region, Tanzania, in a Cross-Sectional Study
We describe a high seropositivity rate for Rift Valley fever virus, in up to 29.3% of tested individuals from the shore of Lake Malawi in southwestern Tanzania, and much lower rates from areas distant to the lake. Rift Valley fever disease or outbreaks have not been observed there in the past, which suggests that the virus is circulating under locally favorable conditions and is either a non-pathogenic strain, or that occasional occurrence of disease is missed. We were able to identify a low socio-economic status and cattle ownership as possible socio-economic risk factors for an individual to be seropositive. Environmental risk factors associated with seropositivity include dense vegetation, and ambient land surface temperatures which may be important for breeding success of the mosquitoes which transmit Rift Valley fever, and for efficient multiplication of the virus in the mosquito. Low elevation of the home, and proximity to Lake Malawi probably lead to abundant surface water collections, which serve as breeding places for mosquitoes. These findings will inform patient care in the areas close to Lake Malawi, and may help to design models which predict low-level virus circulation
Repetitive Pertussis Toxin Promotes Development of Regulatory T Cells and Prevents Central Nervous System Autoimmune Disease
Bacterial and viral infections have long been implicated in pathogenesis and progression of multiple sclerosis (MS). Incidence and severity of its animal model experimental autoimmune encephalomyelitis (EAE) can be enhanced by concomitant administration of pertussis toxin (PTx), the major virulence factor of Bordetella pertussis. Its adjuvant effect at the time of immunization with myelin antigen is attributed to an unspecific activation and facilitated migration of immune cells across the blood brain barrier into the central nervous system (CNS). In order to evaluate whether recurring exposure to bacterial antigen may have a differential effect on development of CNS autoimmunity, we repetitively administered PTx prior to immunization. Mice weekly injected with PTx were largely protected from subsequent EAE induction which was reflected by a decreased proliferation and pro-inflammatory differentiation of myelin-reactive T cells. Splenocytes isolated from EAE-resistant mice predominantly produced IL-10 upon re-stimulation with PTx, while non-specific immune responses were unchanged. Longitudinal analyses revealed that repetitive exposure of mice to PTx gradually elevated serum levels for TGF-β and IL-10 which was associated with an expansion of peripheral CD4+CD25+FoxP3+ regulatory T cells (Treg). Increased frequency of Treg persisted upon immunization and thereafter. Collectively, these data suggest a scenario in which repetitive PTx treatment protects mice from development of CNS autoimmune disease through upregulation of regulatory cytokines and expansion of CD4+CD25+FoxP3+ Treg. Besides its therapeutic implication, this finding suggests that encounter of the immune system with microbial products may not only be part of CNS autoimmune disease pathogenesis but also of its regulation
- …