3,122 research outputs found

    Propagation of Exchange Bias in CoFe/FeMn/CoFe Trilayers

    Full text link
    CoFe/FeMn, FeMn/CoFe bilayers and CoFe/FeMn/CoFe trilayers were grown in magnetic field and at room temperature. The exchange bias field HebH_{eb} depends strongly on the order of depositions and is much higher at CoFe/FeMn than at FeMn/CoFe interfaces. By combining the two bilayer structures into symmetric CoFe/FeMn(tFeMnt_\mathrm{FeMn})/CoFe trilayers, HebtH_{eb}^t and HebbH_{eb}^b of the top and bottom CoFe layers, respectively, are both enhanced. Reducing tFeMnt_\mathrm{FeMn} of the trilayers also results in enhancements of both HebbH_{eb}^b and HebtH_{eb}^t. These results evidence the propagation of exchange bias between the two CoFe/FeMn and FeMn/CoFe interfaces mediated by the FeMn antiferromagnetic order

    Automatic analysis of Pole Mounted Auto-Recloser data for fault diagnosis and prognosis

    Get PDF
    Fault diagnosis is a key part of a control and protection engineer’s role to ensure the effective and stable performance of electrical power networks. One challenge is to support the analysis and application of expert judgement to the, often, large data sets generated. To assist engineers with this task and improve network reliability, this research focuses on analysing previous fault activity in order to obtain an early-warning report to assist fault diagnosis and fault prognosis. This paper details the design of an integrated system with a fault diagnosis algorithm utilising available Supervisory Control And Data Acquisition (SCADA) alarm data and 11kV distribution network data captured from Pole Mounted Auto-Reclosers (PMARs) (provided by a leading UK network operator). The developed system will be capable of diagnosing the nature of a circuit’s previous fault activity, underlying circuit activity and evolving fault activity and the risk of future fault activity. This will provide prognostic decision support for network operators and maintenance staff

    The intermittent behavior and hierarchical clustering of the cosmic mass field

    Get PDF
    The hierarchical clustering model of the cosmic mass field is examined in the context of intermittency. We show that the mass field satisfying the correlation hierarchy ξnQn(ξ2)n1\xi_n\simeq Q_n(\xi_2)^{n-1} is intermittent if κ<d\kappa < d, where dd is the dimension of the field, and κ\kappa is the power-law index of the non-linear power spectrum in the discrete wavelet transform (DWT) representation. We also find that a field with singular clustering can be described by hierarchical clustering models with scale-dependent coefficients QnQ_n and that this scale-dependence is completely determined by the intermittent exponent and κ\kappa. Moreover, the singular exponents of a field can be calculated by the asymptotic behavior of QnQ_n when nn is large. Applying this result to the transmitted flux of HS1700 Lyα\alpha forests, we find that the underlying mass field of the Lyα\alpha forests is significantly intermittent. On physical scales less than about 2.0 h1^{-1} Mpc, the observed intermittent behavior is qualitatively different from the prediction of the hierarchical clustering with constant QnQ_n. The observations, however, do show the existence of an asymptotic value for the singular exponents. Therefore, the mass field can be described by the hierarchical clustering model with scale-dependent QnQ_n. The singular exponent indicates that the cosmic mass field at redshift 2\sim 2 is weakly singular at least on physical scales as small as 10 h1^{-1} kpc.Comment: AAS Latex file, 33 pages,5 figures included, accepted for publication in Ap

    Aspect sensitivity measurements of polar mesosphere summer echoes using coherent radar imaging

    Get PDF
    International audienceThe Esrange VHF radar (ESRAD), located in northern Sweden (67.88° N, 21.10° E), has been used to investigate polar mesosphere summer echoes (PMSE). During July and August of 1998, coherent radar imaging (CRI) was used to study the dynamic evolution of PMSE with high temporal and spatial resolution. A CRI analysis provides an estimate of the angular brightness distribution within the radar's probing volume. The brightness distribution is directly related to the radar reflectivity. Consequently, these data are used to investigate the aspect sensitivity of PMSE. In addition to the CRI analysis, the full correlation analysis (FCA) is used to derive estimates of the prevailing three-dimensional wind associated with the observed PMSE. It is shown that regions within the PMSE with enhanced aspect sensitivity have a correspondingly high signal-to-noise ratio (SNR). Although this relationship has been investigated in the past, the present study allows for an estimation of the aspect sensitivity independent of the assumed scattering models and avoids the complications of comparing echo strengths from vertical and off-vertical beams over large horizontal separations, as in the Doppler Beam Swinging (DBS) method. Regions of enhanced aspect sensitivity were additionally shown to correlate with the wave-perturbation induced downward motions of air parcels embedded in the PMSE

    Enteral Nutrition in Crohn’s Disease: An Underused Therapy

    Get PDF
    This paper reviews the literature on the history, efficacy, and putative mechanism of action of enteral nutrition for inflammatory bowel disease in both paediatric and adult patients. It also analyses the reasoning behind the low popularity of exclusive enteral nutrition in clinical practice despite the benefits and safety profile

    Time evolution of correlation functions and thermalization

    Full text link
    We investigate the time evolution of a classical ensemble of isolated periodic chains of O(N)-symmetric anharmonic oscillators. Our method is based on an exact evolution equation for the time dependence of correlation functions. We discuss its solutions in an approximation which retains all contributions in next-to-leading order in a 1/N expansion and preserves time reflection symmetry. We observe effective irreversibility and approximate thermalization. At large time the system approaches stationary solutions in the vicinity of, but not identical to, thermal equilibrium. The ensemble therefore retains some memory of the initial condition beyond the conserved total energy. Such a behavior with incomplete thermalization is referred to as "mesoscopic dynamics". It is expected for systems in a small volume. Surprisingly, we find that the nonthermal asymptotic stationary solutions do not change for large volume. This raises questions on Boltzmann's conjecture that macroscopic isolated systems thermalize.Comment: 40 pages, 9 figure

    Long-range forces between two excited mercury atoms and associative ionization

    Full text link
    The long-range quadrupole-quadrupole (R5\sim R^{-5}) and leading dispersion (R6\sim R^{-6}) interactions between all pairs of excited Hg(6s6p6s6p) 3P0^3P_0, 3P1^3P_1, 3P2^3P_2, and 1P1^1P_1 atoms are determined. The quadrupole moments are calculated using the {\it ab initio} relativistic configuration-interaction method coupled with many-body perturbation theory. The van der Waals coefficients are approximated using previously calculated static polarizabilities and expressions for the dispersion energy that are validated with similar systems. The long-range interactions are critical for associative ionization in thermal and cold collisions, and are found to be quite different for different pairs of interacting states. Based on this knowledge and the short-range parts of previously calculated potential curves, improved estimates of the chemi-ionization cross sections are obtained.Comment: accepted in Phys Rev
    corecore