29,906 research outputs found
Timing performance of phased-locked loops in optical pulse position modulation communication systems
An optical digital communication system requires that an accurate clock signal be available at the receiver for proper synchronization with the transmitted signal. Phase synchronization is especially critical in M-ary pulse position modulation (PPM) systems where the optimum decision scheme is an energy detector which compares the energy in each of M time slots to decide which of M possible words was sent. Timing errors cause energy spillover into adjacent time slots (a form of intersymbol interference) so that only a portion of the signal energy may be attributed to the correct time slot. This effect decreases the effective signal, increases the effective noise, and increases the probability of error. A timing subsystem for a satellite-to-satellite optical PPM communication link is simulated. The receiver employs direct photodetection, preprocessing of the detected signal, and a phase-locked loop for timing synchronization. The variance of the relative phase error is examined under varying signal strength conditions as an indication of loop performance, and simulation results are compared to theoretical calculations
Theoretical and lidar studies of the density response of the mesospheric sodium layer to gravity wave perturbations
The density response of atmospheric layers to gravity waves is developed in two forms, an exact solution and a perturbation series solution. The degree of nonlinearity in the layer density response is described by the series solution whereas the exact solution gives insight into the nature of the responses. Density perturbation in an atmospheric layer are shown to be substantially greater than the atmospheric density perturbation associated with the propagation of a gravity wave. Because of the density gradients present in atmospheric layers, interesting effects were observed such as a phase reversal in the linear layer response which occurs near the layer peak. Once the layer response is understood, the sodium layer can be used as a tracer of atmospheric wave motions. A two dimensional digital signal processing technique was developed. Both spatial and temporal filtering are utilized to enhance the resolution by decreasing shot noise by more han 10 dB. Many of the features associated with a layer density response to gravity waves were observed in high resolution density profiles of the mesospheric sodium layer. These include nonlinearities as well as the phase reversal in the linear layer response
Mechanically probing coherent tunnelling in a double quantum dot
We study theoretically the interaction between the charge dynamics of a
few-electron double quantum dot and a capacitively-coupled AFM cantilever, a
setup realized in several recent experiments. We demonstrate that the
dot-induced frequency shift and damping of the cantilever can be used as a
sensitive probe of coherent inter-dot tunnelling, and that these effects can be
used to quantitatively extract both the magnitude of the coherent interdot
tunneling and (in some cases) the value of the double-dot T_1 time. We also
show how the adiabatic modulation of the double-dot eigenstates by the
cantilever motion leads to new effects compared to the single-dot case.Comment: 6 pages, 2 figure
Photoemission Spectroscopy of Magnetic and Non-magnetic Impurities on the Surface of the BiSe Topological Insulator
Dirac-like surface states on surfaces of topological insulators have a chiral
spin structure that suppresses back-scattering and protects the coherence of
these states in the presence of non-magnetic scatterers. In contrast, magnetic
scatterers should open the back- scattering channel via the spin-flip processes
and degrade the state's coherence. We present angle-resolved photoemission
spectroscopy studies of the electronic structure and the scattering rates upon
adsorption of various magnetic and non-magnetic impurities on the surface of
BiSe, a model topological insulator. We reveal a remarkable
insensitivity of the topological surface state to both non-magnetic and
magnetic impurities in the low impurity concentration regime. Scattering
channels open up with the emergence of hexagonal warping in the high-doping
regime, irrespective of the impurity's magnetic moment.Comment: 5 pages, 4 figure
The effects of atmospheric refraction on the accuracy of laser ranging systems
Correction formulas derived by Saastamoinen and Marini, and the ray traces through the refractivity profiles all assume a spherically symmetric refractivity profile. The errors introduced by this assumption were investigated by ray tracing through three-dimensional profiles. The results of this investigation indicate that the difference between ray traces through the spherically symmetric and three-dimensional profiles is approximately three centimeters at 10 deg and decreases to less than one half of a centimeter at 80 deg. If the accuracy desired in future laser ranging systems is less than a few centimeters, Saastamoinen and Marini's formulas must be altered to account for the fact that the refractivity profile is not spherically symmetric
Operating manual for the RRL 8 channel data logger
A data collection device which takes measurements from external sensors at user specified time intervals is described. Three sensor ports are dedicated to temperature, air pressure, and dew point. Five general purpose sensor ports are provided. The user specifies when the measurements are recorded as well as when the information is read or stored in a minicomputer or a paper tape
Bathymetric terrain model of the Atlantic margin for marine geological investigations.
Bathymetric terrain models of seafloor morphology are an important component of marine geological investigations. Advances in acquisition and processing technologies of bathymetric data have facilitated the creation of high-resolution bathymetric surfaces that approach the resolution of similar surfaces available for onshore investigations. These bathymetric terrain models provide a detailed representation of the Earth’s subaqueous surface and, when combined with other geophysical and geological datasets, allow for interpretation of modern and ancient geological processes. The purpose of the bathymetric terrain model presented in this report is to provide a high-quality bathymetric surface of the Atlantic margin of the United States that can be used to augment current and future marine geological investigations. The input data for this bathymetric terrain model, covering almost 305,000 square kilometers, were acquired by several sources, including the U.S. Geological Survey, the National Oceanic and Atmospheric Administration National Geophysical Data Center and the Ocean Exploration Program, the University of New Hampshire, and the Woods Hole Oceanographic Institution. These data have been edited using hydrographic data processing software to maximize the quality, usability, and cartographic presentation of the combined terrain model
Nonlinear optical probe of tunable surface electrons on a topological insulator
We use ultrafast laser pulses to experimentally demonstrate that the
second-order optical response of bulk single crystals of the topological
insulator BiSe is sensitive to its surface electrons. By performing
surface doping dependence measurements as a function of photon polarization and
sample orientation we show that second harmonic generation can simultaneously
probe both the surface crystalline structure and the surface charge of
BiSe. Furthermore, we find that second harmonic generation using
circularly polarized photons reveals the time-reversal symmetry properties of
the system and is surprisingly robust against surface charging, which makes it
a promising tool for spectroscopic studies of topological surfaces and buried
interfaces
- …