2,703 research outputs found

    Energy-Momentum Complex in M\o ller's Tetrad Theory of Gravitation

    Full text link
    M\o ller's Tetrad Theory of Gravitation is examined with regard to the energy-momentum complex. The energy-momentum complex as well as the superpotential associated with M\o ller's theory are derived. M\o ller's field equations are solved in the case of spherical symmetry. Two different solutions, giving rise to the same metric, are obtained. The energy associated with one solution is found to be twice the energy associated with the other. Some suggestions to get out of this inconsistency are discussed at the end of the paper.Comment: LaTeX2e with AMS-LaTeX 1.2, 13 page

    Mean field theory and Monte Carlo simulation of Phase transitions and Magnetic Properties of a tridimensional Fe7S8 Compound

    Full text link
    The structural, electronic and magnetic properties of Fe7S8 material have been studied within the framework of the ab-initio calculations, the mean field approximation (MFA) and Monte Carlo simulation (MCS). Our study shows that two forms of the iron atoms, Fe2+ with spin S=2, and Fe3+ with spin {\sigma}=5/2 are the most probable configurations. A mixed Ising model with ferromagnetic spin coupling between Fe2+ and Fe3+ ions and between Fe3+ and Fe3+ ions, and with antiferromagnetic spin coupling between Fe2+ ions of adjacent layers has been used to study the magnetic properties of this compound. We demonstrated that the magnetic phase transition can be either of the first or of the second order, depending on the value of the exchange interaction and crystal field. The presence of vacancies in every second iron layer leads to incomplete cancellation of magnetic moments, hence to the emergence of the ferrimagnetism. Anomalies in the magnetization behavior have been found and compared with the experimental results.Comment: 18 pages, 14 Figures, 4 Table

    Effective theories of scattering with an attractive inverse-square potential and the three-body problem

    Full text link
    A distorted-wave version of the renormalisation group is applied to scattering by an inverse-square potential and to three-body systems. In attractive three-body systems, the short-distance wave function satisfies a Schroedinger equation with an attractive inverse-square potential, as shown by Efimov. The resulting oscillatory behaviour controls the renormalisation of the three-body interactions, with the renormalisation-group flow tending to a limit cycle as the cut-off is lowered. The approach used here leads to single-valued potentials with discontinuities as the bound states are cut off. The perturbations around the cycle start with a marginal term whose effect is simply to change the phase of the short-distance oscillations, or the self-adjoint extension of the singular Hamiltonian. The full power counting in terms of the energy and two-body scattering length is constructed for short-range three-body forces.Comment: 19 pages (RevTeX), 2 figure

    Free field realization of superstring theory on AdS3

    Get PDF
    The Coulomb gas representation of expectation values in SU(2) conformal field theory developed by Dotsenko is extended to the SL(2,R) WZW model and applied to bosonic string theory on AdS3 and to Type II superstrings on AdS3 x N. The spectral flow symmetry is included in the free field realization of vertex operators creating superstring states of both Ramond and Neveu-Schwarz sectors. Conjugate representations for these operators are constructed and a background charge prescription is designed to compute correlation functions. Two and three point functions of bosonic and fermionic string states in arbitrary winding sectors are calculated. Scattering amplitudes that violate winding number conservation are also discussed.Comment: 40 pages, typos corrected, references added, minor changes in presentation and details completed in the calculation of the R sector 2-point function. Version to appear in JHE

    Hydrodynamics of galactic dark matter

    Get PDF
    We consider simple hydrodynamical models of galactic dark matter in which the galactic halo is a self-gravitating and self-interacting gas that dominates the dynamics of the galaxy. Modeling this halo as a sphericaly symmetric and static perfect fluid satisfying the field equations of General Relativity, visible barionic matter can be treated as ``test particles'' in the geometry of this field. We show that the assumption of an empirical ``universal rotation curve'' that fits a wide variety of galaxies is compatible, under suitable approximations, with state variables characteristic of a non-relativistic Maxwell-Boltzmann gas that becomes an isothermal sphere in the Newtonian limit. Consistency criteria lead to a minimal bound for particle masses in the range 30eVm60eV30 \hbox{eV} \leq m \leq 60 \hbox{eV} and to a constraint between the central temperature and the particles mass. The allowed mass range includes popular supersymmetric particle candidates, such as the neutralino, axino and gravitino, as well as lighter particles (mm\approx keV) proposed by numerical N-body simulations associated with self-interactive CDM and WDM structure formation theories.Comment: LaTeX article style, 16 pages including three figures. Final version to appear in Classical and Quantum Gravit

    False Vacuum Inflation with Einstein Gravity

    Full text link
    We investigate chaotic inflation models with two scalar fields, such that one field (the inflaton) rolls while the other is trapped in a false vacuum state. The false vacuum becomes unstable when the inflaton field falls below some critical value, and a first or second order transition to the true vacuum ensues. Particular attention is paid to Linde's second-order `Hybrid Inflation'; with the false vacuum dominating, inflation differs from the usual true vacuum case both in its cosmology and in its relation to particle physics. The spectral index of the adiabatic density perturbation can be very close to 1, or it can be around ten percent higher. The energy scale at the end of inflation can be anywhere between 101610^{16}\,GeV and 101110^{11}\,GeV, though reheating is prompt so the reheat temperature can't be far below 101110^{11}\,GeV. Topological defects are almost inevitably produced at the end of inflation, and if the inflationary energy scale is near its upper limit they can have significant effects. Because false vacuum inflation occurs with the inflaton field far below the Planck scale, it is easier to implement in the context of supergravity than standard chaotic inflation. That the inflaton mass is small compared with the inflationary Hubble parameter is still a problem for generic supergravity theories, but remarkably this can be avoided in a natural way for a class of supergravity models which follow from orbifold compactification of superstrings. This opens up the prospect of a truly realistic, superstringComment: 37 pages, LaTeX (3 figures available as hard copies only), SUSSEX-AST 94/1-
    corecore