716 research outputs found

    Resistance of αAI-1 transgenic chickpea (Cicer arietinum) and cowpea (Vigna unguiculata) dry grains to bruchid beetles (Coleoptera: Chrysomelidae)

    Get PDF
    Dry grain legume seeds possessing αAI-1, an α-amylase inhibitor from common bean (Phaseolus vulgaris), under the control of a cotyledon-specific promoter have been shown to be highly resistant to several important bruchid pest species. One transgenic chickpea and four cowpea lines expressing αAI-1, their respective controls, as well as nine conventional chickpea cultivars were assessed for their resistance to the bruchids Acanthoscelides obtectus (Say), Callosobruchus chinensis L. and Callosobruchus maculatus F. All transgenic lines were highly resistant to both Callosobruchus species. A. obtectus, known to be tolerant to αAI-1, was able to develop in all transgenic lines. While the cotyledons of all non-transgenic cultivars were highly susceptible to all bruchids, C. chinensis and C. maculatus larvae suffered from significantly increased mortality rates inside transgenic seeds. The main factor responsible for the partial resistance in the non-transgenic cultivars was deduced to reside in the seed coat. The αAI-1 present in seeds of transgenic chickpea and cowpea lines significantly increases their resistance to two important bruchid pest species (C. chinensis and C. maculatus) essentially to immunity. To control αAI-1 tolerant bruchid species such as A. obtectus and to avoid the development of resistance to αAI-1, varieties carrying this transgene should be protected with additional control measure

    Polymer chains in confined geometries: Massive field theory approach

    Full text link
    The massive field theory approach in fixed space dimensions d=3d=3 is applied to investigate a dilute solution of long-flexible polymer chains in a good solvent between two parallel repulsive walls, two inert walls and for the mixed case of one inert and one repulsive wall. The well known correspondence between the field theoretical ϕ4\phi^4 O(n)-vector model in the limit n→0n\to 0 and the behavior of long-flexible polymer chains in a good solvent is used to calculate the depletion interaction potential and the depletion force up to one-loop order. Our investigations include modification of renormalization scheme for the case of two inert walls. The obtained results confirm that the depletion interaction potential and the resulting depletion force between two repulsive walls are weaker for chains with excluded volume interaction (EVI) than for ideal chains, because the EVI effectively reduces the depletion effect near the walls. Our results are in qualitative agreement with previous theoretical investigations, experimental results and with results of Monte Carlo simulations.Comment: 18 pages, 10 figure

    Kartierung der Zwergrostresistenz der Gerste MBR1012

    Get PDF
    Zusammenfassung Der Zwergrost gehört zu den wichtigsten Krankheitserregern der Gerste und kann im gemĂ€ĂŸigten Klima Ertragsverluste von ĂŒber 60 % verursachen. Auf der Suche nach neuen Resistenzquellen wurde in der aus Serbien-Montenegro stammenden Landrasse MBR1012 eine wirksame Resistenz gegenĂŒber Zwergrost identifiziert. Um die Vererbung der Resistenz dieser Landrasse aufzuklĂ€ren, wurden 76 DH-Linien aus der Kreuzung der resistenten Landrasse MBR1012 mit der anfĂ€lligen Sorte Scarlett mit der hochvirulenten Zwergrostrasse I80 kĂŒnstlich inokuliert. Die Spaltung der DH-Population nach der Inokulation mit I80 zeigte, dass die Resistenz monogenetisch vererbt wird. Basierend auf den Ergebnissen der bulked segregant analysis konnte die Resistenz dem Chromosom 1H zugeordnet werden und eng gekoppelte molekulare Marker entwickelt werden, welche eine beschleunigte Übertragung dieser Resistenz in adaptierte Sorten erlauben. Die Suche nach neuen Resistenzen gegen Puccinia hordei ist von besonderer Bedeutung, da die Rostpilze durch Mutation und Rekombination zahlreiche physiologische Rassen bilden, wodurch Resistenzen relativ schnell ĂŒberwunden werden können. Stichwörter: Gerste (Hordeum vulgare L.), Zwergrost (Puccinia hordei Otth), Resistenz, bulked segregant analysis (BSA), DH-Linien (doubled-haploid).   Abstract Leaf rust (Puccinia hordei Otth) is an economically important disease of barley in temperate regions, causing considerable yield losses up to about 60 %. Resistance to leaf rust has been detected in a landrace derived from Serbia Montenegro (MBR1012). To obtain information on the genetics of resistance of MBR1012 to leaf rust, 76 DH-lines derived from a cross of MBR1012 to the susceptible cv. Scarlett were inoculated using the highly virulent leaf rust isolate I80. It turned out that resistance is inherited in a monogenic manner and by bulked segregant analysis resistance was assigned to chromosome 1H. Next closely linked molecular markers were developed facilitating an efficient introgression into adapted cultivars. Broadening the genetic base of resistance to leaf rust is of special importance as this pathogen is able to overcome resistances quickly due to mutation and recombination. Keywords: Barley (Hordeum vulgare L.), leaf rust (Puccinia hordei Otth), resistance, bulked segregant analysis (BSA), DH-lines (doubled-haploid

    Environmental risk assessment of genetically modified plants - concepts and controversies

    Get PDF
    Background and purpose: In Europe, the EU Directive 2001/18/EC lays out the main provisions of environmental risk assessment (ERA) of genetically modified (GM) organisms that are interpreted very differently by different stakeholders. The purpose of this paper is to: (a) describe the current implementation of ERA of GM plants in the EU and its scientific shortcomings, (b) present an improved ERA concept through the integration of a previously developed selection procedure for identification of non-target testing organisms into the ERA framework as laid out in the EU Directive 2001/18/EC and its supplement material (Commission Decision 2002/623/EC), (c) describe the activities to be carried out in each component of the ERA and (d) propose a hierarchical testing scheme. Lastly, we illustrate the outcomes for three different crop case examples. Main features: Implementation of the current ERA concept of GM crops in the EU is based on an interpretation of the EU regulations that focuses almost exclusively on the isolated bacteria-produced novel proteins with little consideration of the whole plant. Therefore, testing procedures for the effect assessment of GM plants on non-target organisms largely follow the ecotoxicological testing strategy developed for pesticides. This presumes that any potential adverse effect of the whole GM plant and the plant-produced novel compound can be extrapolated from testing of the isolated bacteriaproduced novel compound or can be detected in agronomic field trials. This has led to persisting scientific criticism. Results: Based on the EU ERA framework, we present an improved ERA concept that is system oriented with the GM plant at the centre and integrates a procedure for selection of testing organisms that do occur in the receiving environment. We also propose a hierarchical testing scheme from laboratory studies to field trials and we illustrate the outcomes for three different crop case examples. Conclusions and recommendations: Our proposed concept can alleviate a number of deficits identified in the current approach to ERA of GM plants. It allows the ERA to be tailored to the GM plant case and the receiving environment

    Consumption of Bt Maize Pollen Expressing Cry1Ab or Cry3Bb1 Does Not Harm Adult Green Lacewings, Chrysoperla carnea (Neuroptera: Chrysopidae)

    Get PDF
    Adults of the common green lacewing, Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae), are prevalent pollen-consumers in maize fields. They are therefore exposed to insecticidal proteins expressed in the pollen of insect-resistant, genetically engineered maize varieties expressing Cry proteins derived from Bacillus thuringiensis (Bt). Laboratory experiments were conducted to evaluate the impact of Cry3Bb1 or Cry1Ab-expressing transgenic maize (MON 88017, Event Bt176) pollen on fitness parameters of adult C. carnea. Adults were fed pollen from Bt maize varieties or their corresponding near isolines together with sucrose solution for 28 days. Survival, pre-oviposition period, fecundity, fertility and dry weight were not different between Bt or non-Bt maize pollen treatments. In order to ensure that adults of C. carnea are not sensitive to the tested toxins independent from the plant background and to add certainty to the hazard assessment, adult C. carnea were fed with artificial diet containing purified Cry3Bb1 or Cry1Ab at about a 10 times higher concentration than in maize pollen. Artificial diet containing Galanthus nivalis agglutinin (GNA) was included as a positive control. No differences were found in any life-table parameter between Cry protein containing diet treatments and control diet. However, the pre-oviposition period, daily and total fecundity and dry weight of C. carnea were significantly negatively affected by GNA-feeding. In both feeding assays, the stability and bioactivity of Cry proteins in the food sources as well as the uptake by C. carnea was confirmed. These results show that adults of C. carnea are not affected by Bt maize pollen and are not sensitive to Cry1Ab and Cry3Bb1 at concentrations exceeding the levels in pollen. Consequently, Bt maize pollen consumption will pose a negligible risk to adult C. carnea

    A biomechanical analysis of prognathous and orthognathous insect head capsules: evidence for a many‐to‐one mapping of form to function

    Get PDF
    Insect head shapes are remarkably variable, but the influences of these changes on biomechanical performance are unclear. Among ‘basal’ winged insects, such as dragonflies, mayflies, earwigs and stoneflies, some of the most prominent anatomical changes are the general mouthpart orientation, eye size and the connection of the endoskeleton to the head. Here, we assess these variations as well as differing ridge and sclerite configurations using modern engineering methods including multibody dynamics modelling and finite element analysis in order to quantify and compare the influence of anatomical changes on strain in particular head regions and the whole head. We show that a range of peculiar structures such as the genal/subgenal, epistomal and circumocular areas are consistently highly loaded in all species, despite drastically differing morphologies in species with forward‐projecting (prognathous) and downward‐projecting (orthognathous) mouthparts. Sensitivity analyses show that the presence of eyes has a negligible influence on head capsule strain if a circumocular ridge is present. In contrast, the connection of the dorsal endoskeletal arms to the head capsule especially affects overall head loading in species with downward‐projecting mouthparts. Analysis of the relative strains between species for each head region reveals that concerted changes in head substructures such as the subgenal area, the endoskeleton and the epistomal area lead to a consistent relative loading for the whole head capsule and vulnerable structures such as the eyes. It appears that biting‐chewing loads are managed by a system of strengthening ridges on the head capsule irrespective of the general mouthpart and head orientation. Concerted changes in ridge and endoskeleton configuration might allow for more radical anatomical changes such as the general mouthpart orientation, which could be an explanation for the variability of this trait among insects. In an evolutionary context, many‐to‐one mapping of strain patterns onto a relatively similar overall head loading indeed could have fostered the dynamic diversification processes seen in insects

    Impact of Allium sativum leaf lectin on the Helicoverpa armigera larval parasitoid Campoletis chlorideae

    Get PDF

    Recommendations for the design of laboratory studies on non-target arthropods for risk assessment of genetically engineered plants

    Get PDF
    This paper provides recommendations on experimental design for early-tier laboratory studies used in risk assessments to evaluate potential adverse impacts of arthropod-resistant genetically engineered (GE) plants on non-target arthropods (NTAs). While we rely heavily on the currently used proteins from Bacillus thuringiensis (Bt) in this discussion, the concepts apply to other arthropod-active proteins. A risk may exist if the newly acquired trait of the GE plant has adverse effects on NTAs when they are exposed to the arthropod-active protein. Typically, the risk assessment follows a tiered approach that starts with laboratory studies under worst-case exposure conditions; such studies have a high ability to detect adverse effects on non-target species. Clear guidance on how such data are produced in laboratory studies assists the product developers and risk assessors. The studies should be reproducible and test clearly defined risk hypotheses. These properties contribute to the robustness of, and confidence in, environmental risk assessments for GE plants. Data from NTA studies, collected during the analysis phase of an environmental risk assessment, are critical to the outcome of the assessment and ultimately the decision taken by regulatory authorities on the release of a GE plant. Confidence in the results of early-tier laboratory studies is a precondition for the acceptance of data across regulatory jurisdictions and should encourage agencies to share useful information and thus avoid redundant testing
    • 

    corecore