7,131 research outputs found

    The Proton Electric Pygmy Dipole Resonance

    Get PDF
    The evolution of the low-lying E1 strength in proton-rich nuclei is analyzed in the framework of the self-consistent relativistic Hartree-Bogoliubov (RHB) model and the relativistic quasiparticle random-phase approximation (RQRPA). Model calculations are performed for a series of N=20 isotones and Z=18 isotopes. For nuclei close to the proton drip-line, the occurrence of pronounced dipole peaks is predicted in the low-energy region below 10 MeV excitation energy. From the analysis of the proton and neutron transition densities and the structure of the RQRPA amplitudes, it is shown that these states correspond to the proton pygmy dipole resonance.Comment: 7 pages, 4 figures, to be published in Phys. Rev. Let

    Renormalized relativistic Hartree-Bogoliubov equations with a zero-range pairing interaction

    Get PDF
    A recently introduced scheme for the renormalization of the Hartree-Fock-Bogoliubov equations in the case of zero-range pairing interaction is extended to the relativistic Hartree-Bogoliubov model. A density-dependent strength parameter of the zero-range pairing is adjusted in such a way that the renormalization procedure reproduces the empirical 1S0^1S_0 pairing gap in isospin-symmetric nuclear matter. The model is applied to the calculation of ground-state pairing properties of finite spherical nuclei.Comment: 13 pages, 8 figures, accepted for publication in Physical Review

    Random-phase approximation based on relativistic point-coupling models

    Get PDF
    The matrix equations of the random-phase approximation (RPA) are derived for the point-coupling Lagrangian of the relativistic mean-field (RMF) model. Fully consistent RMF plus (quasiparticle) RPA illustrative calculations of the isoscalar monopole, isovector dipole and isoscalar quadrupole response of spherical medium-heavy and heavy nuclei, test the phenomenological effective interactions of the point-coupling RMF model. A comparison with experiment shows that the best point-coupling effective interactions accurately reproduce not only ground-state properties, but also data on excitation energies of giant resonances.Comment: 24 pages, 4 figures, accepted for publication in Physical Review

    Toroidal dipole resonances in the relativistic random phase approximation

    Get PDF
    The isoscalar toroidal dipole strength distributions in spherical nuclei are calculated in the framework of a fully consistent relativistic random phase approximation. It is suggested that the recently observed "low-lying component of the isoscalar dipole mode" might in fact correspond to the toroidal giant dipole resonance. Although predicted by several theoretical models, the existence of toroidal resonances has not yet been confirmed in experiment. The strong mixing between the toroidal resonance and the dipole compression mode might help to explain the large discrepancy between theory and experiment on the position of isoscalar giant dipole resonances.Comment: 10 pages, 3 figures; Phys.Rev.C, in prin

    Nonlinear dynamics of giant resonances in atomic nuclei

    Get PDF
    The dynamics of monopole giant resonances in nuclei is analyzed in the time-dependent relativistic mean-field model. The phase spaces of isoscalar and isovector collective oscillations are reconstructed from the time-series of dynamical variables that characterize the proton and neutron density distributions. The analysis of the resulting recurrence plots and correlation dimensions indicate regular motion for the isoscalar mode, and chaotic dynamics for the isovector oscillations. Information-theoretic functionals identify and quantify the nonlinear dynamics of giant resonances in quantum systems that have spatial as well as temporal structure.Comment: 24 pages, RevTeX, 15 PS figures, submitted Phys. Rev.

    Relativistic description of exotic collective excitation phenomena in atomic nuclei

    Full text link
    The low-lying dipole and quadrupole states in neutron rich nuclei, are studied within the fully self-consistent relativistic quasiparticle random-phase approximation (RQRPA), formulated in the canonical basis of the Relativistic Hartree-Bogoliubov model (RHB), which is extended to include the density dependent interactions. In heavier nuclei, the low-lying E1 excited state is identified as a pygmy dipole resonance (PDR), i.e. as a collective mode of excess neutrons oscillating against a proton-neutron core. Isotopic dependence of the PDR is characterized by a crossing between the PDR and one-neutron separation energies. Already at moderate proton-neutron asymmetry the PDR peak is calculated above the neutron emission threshold, indicating important implications for the observation of the PDR in (gamma,gamma') scattering, and on the theoretical predictions of the radiative neutron capture rates in neutron-rich nuclei. In addition, a novel method is suggested for determining the neutron skin of nuclei, based on measurement of excitation energies of the Gamow-Teller resonance relative to the isobaric analog state.Comment: 8 pages, 3 figures, invited talk at the international workshop "Blueprints for the nucleus: From First Principles to Collective Motion", May 17-22. 2004, Istanbul, Turkey; to appear in Int. J. Mod. Phys.
    corecore