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The matrix equations of the random-phase approximation (RPA) are derived for the point-coupling Lagrangian
of the relativistic mean-field (RMF) model. Fully consistent RMF plus (quasiparticle) RPA illustrative calculations
of the isoscalar monopole, isovector dipole, and isoscalar quadrupole response of spherical medium-heavy and
heavy nuclei test the phenomenological effective interactions of the point-coupling RMF model. A comparison
with experiment shows that the best point-coupling effective interactions accurately reproduce not only ground-
state properties but also data on excitation energies of giant resonances.
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I. INTRODUCTION

The covariant self-consistent mean-field approach to the
nuclear many-body problem has reached a mature stage [1,2].
Models based on the relativistic mean-field approximation
are successfully employed in the description of structure
phenomena not only in medium-heavy and heavy stable nuclei
but also in regions of exotic nuclei far from the line of
β stability and close to the nucleon drip lines.

Most applications have been based on the finite-range
meson-exchange representation of the relativistic mean-field
(RMF) theory, in which the nucleus is described as a system
of Dirac nucleons coupled to exchange mesons and the
electromagnetic field through an effective Lagrangian. A
medium dependence can be introduced either by including
nonlinear meson self-interaction terms in the Lagrangian [3]
or by assuming an explicit density dependence for the meson-
nucleon couplings. The former approach has been adopted
in the construction of several very successful phenomeno-
logical RMF interactions, for instance, the popular NL3 [4]
parametrization of the effective Lagrangian. In the latter case,
the density dependence of the meson-nucleon vertex functions
can be determined either from microscopic Dirac-Brueckner
calculations in nuclear matter [5,6], or it can be completely
phenomenological [7,8], with parameters adjusted to data
on finite nuclei and empirical properties of symmetric and
asymmetric nuclear matter. A series of recent studies has
shown that, when compared with standard nonlinear meson-
exchange effective Lagrangians, effective interactions with an
explicit density dependence of the meson-nucleon couplings
are more flexible and provide an improved description of
asymmetric nuclear matter, neutron matter, and finite nuclei
far from stability.

An alternative representation of the self-consistent rela-
tivistic mean-field approach to nuclear structure is formulated
in terms of point-coupling (contact) nucleon-nucleon interac-
tions. When applied in the description of finite nuclei, the
framework of relativistic mean-field point-coupling (RMF-
PC) models [9–14] produces results that are comparable to

those obtained in the meson-exchange picture. In principle, the
point-coupling approach is more general and the interaction
terms are not restricted by the constraints imposed by the
finite range of meson exchange. Of course, also in the case of
contact interactions, medium effects can be taken into account
by the inclusion of higher order interaction terms, for instance,
six-nucleon vertices (ψ̄ψ)3 and eight-nucleon vertices (ψ̄ψ)4

and [(ψ̄γµψ)(ψ̄γ µψ)]2, or it can be encoded in the effective
couplings (i.e., in the strength parameters of the interaction
in the isoscalar and isovector channels). Several studies of
the RMF-PC framework have been reported over the past
10 years, but it is only recently that reliable and accurate
phenomenological parametrizations have been adjusted and
applied in the description of ground-state properties of
finite nuclei on a quantitative level. In particular, based on
an extensive multiparameter χ2 minimization procedure, in
Ref. [14] Bürvenich et al. have adjusted the PC-F1 set of cou-
pling constants for an effective point-coupling Lagrangian with
higher order interaction terms. The PC-F1 interaction has been
tested in the calculation of ground-state properties of a large
number of spherical and deformed nuclei, and the results are
on the level of the best meson-exchange effective interactions.

Concepts of effective field theory and density functional
theory have been used to derive a microscopic relativistic
point-coupling model of nuclear many-body dynamics con-
strained by in-medium quantum chromodynamics (QCD) sum
rules and chiral symmetry [15–17]. The effective Lagrangian
is characterized by density-dependent coupling strengths,
determined by chiral one- and two-pion exchange and by
QCD sum rule constraints for the large isoscalar nucleon self-
energies that arise through changes of the quark condensate
and the quark density at finite baryon density. This approach
has been tested in the analysis of the equations of state for
symmetric and asymmetric nuclear matter and of bulk and
single-nucleon properties of finite nuclei. In comparison with
purely phenomenological mean-field approaches, the built-in
QCD constraints and the explicit treatment of pion exchange
restrict the freedom in adjusting parameters and functional
forms of density-dependent couplings.
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A number of studies have shown that, both for finite-range
meson-exchange and for point-coupling mean-field models,
the empirical data set of ground-state properties of finite
nuclei can determine only six or seven parameters in the
general expansion of the effective Lagrangian in powers of
the fields and their derivatives [18]. The influence of the
adjustment procedure and of the choice of ground-state data
on the properties and predictive power of the relativistic
mean-field model with point couplings has recently been
investigated in Ref. [19]. Although virtually all phenomeno-
logical relativistic effective interactions have been adjusted
to empirical properties of symmetric and asymmetric nuclear
matter, and to ground-state properties of a set of spherical
nuclei, in Ref. [20] it has been shown that a comparison
of relativistic RPA results on multipole giant resonances
with experimental excitation energies can provide additional
constrains on the parameters that characterize the isoscalar
and isovector channels of the effective interactions. Data
on giant resonances have been taken into account in the
recent adjustment of a new improved relativistic mean-field
effective interaction with explicit density dependence of the
meson-nucleon couplings [21].

Relativistic RPA calculations have been performed since
the early 1980s, but it is only more recently that nonlinear
meson self-interaction terms or density-dependent meson-
nucleon couplings have been included in the RRPA framework
[20,22,23]. As in the case of ground-state properties, the
inclusion of a medium dependence in the residual interaction
is necessary for a quantitative description of collective excited
states. Another essential feature of the RRPA is the fully
consistent treatment of the Dirac sea of negative energy
states. In addition to the usual particle-hole pairs, the RRPA
configuration space must also include pair configurations
built from positive-energy states occupied in the ground-state
solution, and empty negative-energy states in the Dirac sea.
These configurations ensure not only current conservation and
the decoupling of the spurious states [24] but also a quantitative
comparison with the experimental excitation energies of
giant resonances [25]. Collective excitations in open-shell
nuclei can be analyzed with the relativistic quasiparticle
random-phase approximation (RQRPA), which in Ref. [26]
has been formulated in the canonical single-nucleon basis of
the relativistic Hartree-Bogoliubov (RHB) model.

Some of the recent applications of the RRPA include
studies of nuclear compression modes [23,27,28], of multipole
giant resonances and low-lying collective states in spherical
nuclei [29], of the evolution of the low-lying isovector dipole
response in nuclei with a large neutron excess [30,31], and of
the toroidal dipole response [32]. The RHB+RQRPA approach
has been employed in the investigation of the multipole
response of weakly bound neutron-rich nuclei and of spin-
isospin excitations in finite nuclei [26,33].

In this work we introduce the RPA based on the relativistic
mean-field framework with point-coupling interactions. Illus-
trative calculations of excitation energies of giant resonances in
spherical nuclei will test the PC-F1 effective interaction [14].
The RRPA matrix equations are derived in Sec. II. Isoscalar
and isovector giant resonances in spherical nuclei are analyzed
in Sec. III. The results are summarized in Sec. IV.

II. RANDOM-PHASE APPROXIMATION BASED
ON THE POINT-COUPLING RELATIVISTIC

MEAN-FIELD MODEL

The relativistic point-coupling Lagrangian is built from
basic densities and currents bilinear in the Dirac spinor field
ψ of the nucleon:

ψ̄Oτ�ψ, Oτ ∈ {1, τi}, � ∈ {1, γµ, γ5, γ5γµ, σµν}. (1)

Here τi are the isospin Pauli matrices and � generically
denotes the Dirac matrices. The interaction terms of the
Lagrangian are products of these bilinears. Although a general
effective Lagrangian can be written as a power series in the
currents ψ̄Oτ�ψ and their derivatives, it is well known from
numerous applications of relativistic mean-field models that
properties of symmetric and asymmetric nuclear matter, as
well as empirical ground-state properties of finite nuclei,
constrain only the isoscalar-scalar (S), the isoscalar-vector (V),
the isovector-vector (TV) and to a certain extent the isovector-
scalar (TS) channels. Here we consider a model with four-,
six-, and eight-fermion point couplings (contact interactions)
[14], defined by the Lagrangian density as follows:

L = Lfree + L4f + Lhot + Lder + Lem,

Lfree = ψ̄(iγµ∂µ − m)ψ,

L4f = − 1
2αS(ψ̄ψ)(ψ̄ψ)

− 1
2 αV (ψ̄γµψ)(ψ̄γ µψ)

− 1
2αTS(ψ̄ �τψ)·(ψ̄ �τψ)

− 1
2αTV(ψ̄ �τγµψ)·(ψ̄ �τγ µψ),

Lhot = − 1
3βS(ψ̄ψ)3− 1

4 γS(ψ̄ψ)4 (2)

− 1
4γV [(ψ̄γµψ)(ψ̄γ µψ)]2,

Lder = − 1
2 δS(∂νψ̄ψ)(∂νψ̄ψ)

− 1
2δV (∂νψ̄γµψ)(∂νψ̄γ µψ)

− 1
2δTS(∂νψ̄ �τψ) · (∂νψ̄ �τψ)

− 1
2δTV(∂νψ̄ �τγµψ) · (∂νψ̄ �τγ µψ),

Lem = − eAµψ̄[(1 − τ3)/2]γ µψ − 1
4FµνF

µν.

Vectors in isospin space are denoted by arrows, and symbols
in bold indicate vectors in ordinary three-dimensional space.
In addition to the free nucleon Lagrangian Lfree, the four-
fermion interaction terms contained in L4f , and higher order
terms in Lhot, when applied to finite nuclei the model must
include the coupling Lem of the protons to the electromagnetic
field Aµ and derivative terms contained in Lder. In the terms
∂ν(ψ̄�ψ) the derivative is understood to act on both ψ̄ and ψ .
One could, of course, construct many more higher order
interaction terms, or derivative terms of higher order, but in
practice only a relatively small set of free parameters can be
adjusted from the data set of ground-state nuclear properties.

The Lagrangian is understood to be used in the mean-field
approximation. The single-nucleon Dirac equation is derived
by the variation of the Lagrangian [Eq. (2)] with respect to ψ̄
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as follows:

i∂tψi = {α[−i∇ − V (r, t)]+V (r, t) + β[m + S(r, t)]}ψi.

(3)

The Dirac Hamiltonian contains the following scalar and
vector potentials:

S(r, t) = �S(r, t) + �τ ��TS(r, t), (4)

V µ(r, t) = �µ(r, t) + �τ ��µ

T (r, t), (5)

with the nucleon isoscalar-scalar, isovector-scalar, isoscalar-
vector, and isovector-vector self-energies defined by the
following relations:

�S = αS(ψ̄ψ) + βS(ψ̄ψ)2 + γS(ψ̄ψ)3 − δS�(ψ̄ψ), (6)
��TS = αTS(ψ̄ �τψ) − δTS�(ψ̄ �τψ), (7)

�µ = αV (ψ̄γ µψ) + γV (ψ̄γ αψ)(ψ̄γαψ)(ψ̄γ µψ)

− δV �(ψ̄γ µψ) − eAµ 1 − τ3

2
, (8)

��µ

T = αTV(ψ̄ �τγ µψ) − δTV�(ψ̄ �τγ µψ), (9)

respectively. The self-energies are determined by the corre-
sponding local densities and currents calculated in the no-sea
approximation as follows:

ρS(r, t) =
A∑

i=1

ψ̄i(r, t)ψi(r, t),

�ρTS(r, t) =
A∑

i=1

ψ̄i(r, t)�τψi(r, t),

(10)

jµ(r, t) =
A∑

i=1

ψ̄i(r, t)γµψi(r, t),

�jµ(r, t) =
A∑

i=1

ψ̄i(r, t)�τγµψi(r, t).

The summation runs over all A occupied states in the Fermi sea
(i.e., only occupied single-nucleon states with positive energy
explicitly contribute to the nucleon self-energies). Even though
the stationary solutions for the negative-energy states do not
contribute to the densities in the no-sea approximation, their
contribution is implicitly included in the time evolution of the
nuclear system [25,34].

In an effective theory with the parameters of the Lagrangian
determined from a set of ground-state data, a large part of
vacuum polarization effects is already taken into account
in adjusting the parameters to experiment. The stationary
solutions of the relativistic mean-field equations correspond
to the ground-state of a nucleus. The Dirac spinors that
determine the ground-state densities (i.e., positive-energy
states) can be expanded, for instance, in terms of vacuum
solutions, which form a complete set of plane wave functions
in spinor space. This set is only complete, however, if in
addition to the positive-energy states, it also contains the
states with negative energy, in this case the Dirac sea of the
vacuum. Positive-energy solutions of the RMF equations in
a finite nucleus automatically contain vacuum components
with negative energy. In the same way, solutions that describe

excited states, contain negative-energy components which
correspond to the ground-state solution.

This is also true, in particular, for the solutions of the time-
dependent problem. In the time evolution of A nucleons in the
effective mean-field potential, at each time t the single-nucleon
spinors ψi(t) can be expanded in terms of the complete set of
solutions of the stationary Dirac equation ψ

(0)
k . This means that

at each time t one finds a local Fermi sea of A time-dependent
spinors that, of course, contain components of negative-energy
solutions of the stationary Dirac equation. The states which
form the local Dirac sea are orthogonal to the local Fermi sea
at each time. This is the meaning of the no-sea approximation
in the time-dependent problem.

The relativistic random-phase approximation (RRPA)
equations can be derived from the response of the density
matrix to an external field that oscillates with a small amplitude
(for details see Refs. [20,25]). The matrix form of these
equations reads as follows:(

A B

B∗ A∗

) (
Xν

Yν

)
= Eν

(
1 0
0 −1

) (
Xν

Yν

)
, (11)

where Eν denotes the eigenfrequency and Xν and Yν are the
corresponding RPA amplitudes. The RRPA matrices A and B
read

A =
(

(εp − εh)δpp′δhh′

(εα − εh)δαα′δhh′

)

+
(

Vph′hp′ Vph′hα′

Vαh′hp′ Vαh′hα′

)
(12)

and

B =
(

Vpp′hh′ Vpα′hh′

Vαp′hh′ Vαα′hh′

)
. (13)

The matrix elements of the residual interaction are derived
from the Dirac Hamiltonian of Eq. (3):

Vabcd = ∂hac

∂ρdb

, (14)

where the generic indices (a, b, c, d, . . .) denote quantum
numbers that specify the single-nucleon states {ψa}. These
belong to three distinct sets: The index p (particle) denotes
unoccupied states above the Fermi sea, the index h (hole) is
for occupied states in the Fermi sea, and with α we denote the
unoccupied negative-energy states in the Dirac sea.

Because the RRPA is derived in the small amplitude limit,
the currents and densities can be expanded around their
ground-state values

ρS(r, t) = ρ
gs
S (r) + δρS(r, t)

�ρT S(r, t) = ρ
gs
TS(r) + δ �ρTS(r, t)

(15)
jµ(r, t) = ρ

gs
V (r) + δjµ(r, t),

�jµ(r, t) = ρ
gs
TV(r) + δ �jµ(r, t).

In this work we consider only spherical even-even nuclei.
Because of time-reversal invariance, the spatial components of
the currents vanish in the nuclear ground state. Furthermore,
charge conservation implies that only the three-component
of the isovector scalar and vector densities contributes in the

014312-3
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ground state. The individual contribution of each field to Vabcd

can now be obtained by inserting the expansions Eq. (15) in
the matrix element of the Dirac Hamiltonian Eq. (3):

V S
abcd =

∫
ψ†

aβψc

(
αS + 2βSρ

gs
S + 3γSρ

gs
S

2 + δS�
)

×ψ
†
bβψd d3r,

V TS
abcd =

∫
ψ†

aβ �τψc(αTS + δTS�)ψ†
bβ �τψd d3r,

(16)
V V

abcd =
∫

ψ†
aψc

(
αV + 3γV ρ

gs
V

2 + δV �
)
ψ

†
bψd d3r

−
∫

ψ†
aαψc

(
αV + γV ρ

gs
V

2 + δV �
)
ψ

†
bαψd d3r,

V TV
abcd =

∫
ψ†

aβ �τγµψc

(
αTV + δTV�

)
ψ

†
bβ �τγ µψd d3r.

Open-shell nuclei calculations are performed in the frame-
work of the fully self-consistent RHB plus relativistic QRPA
model. The RHB represents a relativistic extension of the
Hartree-Fock-Bogoliubov model, and it provides a unified
description of particle-hole (ph) and particle-particle (pp)
correlations. In most applications of the RHB model [2] the
pairing part of the well-known and very successful Gogny
force [35] has be employed in the pp channel:

V pp(1, 2) =
∑
i=1,2

e−[(r1−r2)/µi ]2

× (Wi + BiP
σ − HiP

τ − MiP
σP τ ), (17)

with the set D1S [36] for the parameters µi,Wi, Bi,Hi , and Mi

(i = 1, 2). This force has been very carefully adjusted to the
pairing properties of finite nuclei all over the periodic table.
In particular, the basic advantage of the Gogny force is the
finite range, which automatically guarantees a proper cutoff in
momentum space.

In Ref. [26] the RQRPA has been formulated in the canon-
ical single-nucleon basis of the RHB model. By definition,
the canonical basis diagonalizes the density matrix and it
is always localized. It describes both the bound states and
the positive-energy single-particle continuum. This particular
representation of the RQRPA is very convenient because,
to describe transitions to low-lying excited states in weakly
bound nuclei, the two-quasiparticle configuration space must
include states with both nucleons in the discrete bound levels,
states with one nucleon in a bound level and one nucleon
in the continuum, and also states with both nucleons in
the continuum. In addition, the full RQRPA equations are
rather complicated and it is considerably simpler to solve
these equations in the canonical basis where the RHB wave
functions take a simple BCS form. In this case one needs
only the matrix elements of the interactions in the ph and pp
channels and certain combinations of the occupation factors
of canonical states. The relativistic QRPA of Ref. [26] is
fully self-consistent. For the interaction in the particle-hole
channel effective Lagrangians with nonlinear meson self-
interactions or nucleon point couplings are used, and pairing
correlations are described by the pairing part of the finite range
Gogny interaction. Both in the ph and pp channels, the same

interactions are used in the RHB equations that determine the
canonical quasiparticle basis and in the matrix equations of
the RQRPA. The RQRPA configuration space includes also
the Dirac sea of negative energy states.

In the next section we present illustrative relativistic
RPA/QRPA calculations of the multipole response of spherical
nuclei. For the multipole operator Q̂λµ, the response function
R(E) is defined

R(E) =
∑
f

B(0i → λf )
�/2π

(E − Ef )2 + (�/2)2
, (18)

where � is the width of the Lorentzian distribution and

B(0i → λf ) = |〈λf |Q̂λ|0i〉|2. (19)

For all calculations in this work the discrete spectrum of the
RRPA states is folded with the Lorentzian of Eq. (18), with
the width � = 1 MeV.

III. MULTIPOLE GIANT RESONANCES

We have performed fully consistent relativistic RPA/QRPA
calculations of isoscalar monopole, isovector dipole, and
isoscalar quadrupole giant resonances in spherical nuclei.
The interaction in the particle-hole channel is determined by
the effective point-coupling Lagrangian Eq. (2), and pairing
correlations are described by the pairing part of the finite range
Gogny interaction D1S [36]. The R(Q)RPA configuration
space includes the Dirac sea of negative energy states. In
both the particle-hole and particle-particle channels, the same
interactions are used in the calculation of the ground state and
in the matrix equations of the R(Q)RPA.

The point-coupling Lagrangian Eq. (2) contains 11 ad-
justable coupling constants. The PC-F1 effective interaction,
adjusted in Ref. [14], corresponds to a restricted set of
9 coupling parameters and does not include the isovector-
scalar channel. The parameters have been determined in a
χ2 minimization procedure, adjusted to ground-state ob-
servables (binding energy, charge radius, diffraction radius,
and surface thickness) of 17 spherical nuclei. The resulting
parameters of the PC-F1 effective interaction are displayed in
Table I. This interaction has been tested in the analysis
of the equation of state of symmetric nuclear matter and
neutron matter, binding energies and form-factor- and shell-
structure-related ground-state properties of several isotopic
and isotonic chains, including superheavy nuclei with known
experimental masses, and of the fission barrier in 240Pu.
The comparison with data has shown that the RMF-PC
model with the PC-F1 interaction can compete with the best
phenomenological finite-range meson-exchange interactions.
It should be noted, however, that PC-F1 exhibits a relatively
large volume asymmetry at saturation a4 ≈ 38 MeV, resulting
in a very stiff equation of state for neutron matter and
too-large values for the neutron skin in finite nuclei. Yet
most recent meson-exchange RMF effective forces include an
explicit medium dependence in both the isoscalar and isovector
channels [7,8], and thus provide an improved description of
asymmetric nuclear matter and neutron matter and realistic
values of the neutron skin.
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TABLE I. The parameter set PC-F1 from Ref. [14].

Coupling constant Dimension Value

αS MeV−2 −3.83577 × 10−4

βS MeV−5 7.68567 × 10−11

γS MeV−8 −2.90443 × 10−17

δS MeV−4 −4.1853 × 10−10

αV MeV−2 2.59333 × 10−4

γV MeV−8 −3.879 × 10−18

δV MeV−4 −1.1921 × 10−10

αTV MeV−2 3.4677 × 10−5

δTV MeV−4 −4.2 × 10−11

In the following examples we test the PC-F1 interaction in
the calculation of excitation energies of giant resonances in
spherical nuclei. We also try to determine whether R(Q)RPA
calculations of excited states can be used to discriminate
between different point-coupling interactions or even place
additional constraints on the parameters of the effective
interactions [20].

A. The isoscalar giant monopole resonance

The isoscalar giant monopole resonance (ISGMR)
represents the simplest mode of collective oscillations in
finite nuclei (the breathing mode) and provides valuable
information on the nuclear matter incompressibility. The
range of values of the nuclear matter compression modulus
K∞ can be best determined by comparing results of fully
consistent microscopic calculation of both ground-state
properties and the ISGMR excitation energies in spherical
nuclei with data. Moreover, because K∞ determines bulk

properties of nuclei and the GMR excitation energies
depend also on the surface compressibility, measurements
and microscopic calculations of GMR in heavy spherical
nuclei should, in principle, provide a more reliable estimate
of the nuclear matter incompressibility [37,38]. A recent
relativistic mean-field plus R(Q)RPA analysis of the ISGMR,
based on effective Lagrangians with density-dependent
meson-nucleon vertex functions, has shown that the nuclear
matter compression modulus of effective interactions based on
the relativistic mean-field approximation should be restricted
to a rather narrow interval K∞ ≈ 250–270 MeV [39].

Although the point-coupling PC-F1 interaction has been
adjusted to ground-state data only, its compression modulus
K∞ = 270 MeV is within the range predicted by the meson-
exchange models. The latter, however, tend to underesti-
mate the surface thickness of finite nuclei [14]. Because
the excitation energies of the ISGMR generally depend also
on the surface compressibility, point-coupling and meson-
exchange effective interactions with nearly identical values
of the nuclear matter compression modulus do not necessarily
predict identical GMR excitation energies, especially in lighter
nuclei in which surface effects are more pronounced.

In Fig. 1 we display the isoscalar monopole strength
distribution in 208Pb, calculated in the relativistic RPA with
the PC-F1 effective interaction. For the ISGMR peak at E =
14.16 MeV excitation energy, in the right panel we plot the
corresponding proton, neutron, and total isoscalar transition
densities. The node at the surface is characteristic for the the
breathing mode of oscillations. The calculated peak energy is
in excellent agreement with the newest data on the ISGMR
centroid energy m1/m0 = 13.96 ± 0.20 MeV from Ref. [40]
(denoted by the arrow in Fig. 1). In Table II we have also

403020100
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12

16

20x10
3
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(E

) 
(f
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0 2 4 86 10 12
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-0.02

-0.01

0.00

0.01

0.02

δρ
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208
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E=14.16 MeV

FIG. 1. The isoscalar monopole strength distribution (left panel) and the transition densities (right panel) in 208Pb, calculated with the
PC-F1 interaction. The experimental excitation energy of the ISGMR is denoted by the arrow. The neutron, proton, and total isoscalar transition
densities correspond to the peak at E = 14.16 MeV.

014312-5
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TABLE II. The R(Q)RPA excitation energies of the ISGMR,
calculated with the PC-F1 effective interaction. The theoretical
m1/m0 centroids are compared with the experimental excitation
energies of the monopole resonances from Refs. [41] (90Zr), [40]
(116Sn, 144Sm, 208Pb), and [42] (112Sn, 124Sn).

PC-F1 (MeV) EXP (MeV)

90Zr 18.6 17.81 + 0.12 − 0.12
112Sn 17.0 15.43 + 0.11 − 0.10
116Sn 17.0 15.82 + 0.20 − 0.20
124Sn 16.5 14.50 + 0.14 − 0.14
144Sm 16.0 15.40 + 0.30 − 0.30
208Pb 14.2 13.96 + 0.20 − 0.20

compared the R(Q)RPA m1/m0 centroids with very recent
data on medium-heavy nuclei [40–42]. It appears that the
excitation energies predicted by the PC-F1 effective interaction
are systematically somewhat higher than the experimental
ISGMR’s, indicating that the nuclear matter compression
modulus of a relativistic point-coupling model should probably
be closer to K∞ ≈ 250 MeV. This would be in agreement
with the modern density-dependent meson-exchange effective
interactions: DD-ME1 with K∞ = 245 MeV [8] and DD-ME2
with K∞ = 251 MeV [21].

B. The isovector giant dipole resonance

The isovector giant dipole resonance (IVGDR), calculated
in the R(Q)RPA, is predominantly determined by the isovector
channel of the effective interaction. In particular, the position
of the IVGDR is directly related to the nuclear matter
asymmetry energy. This quantity can be expanded in a Taylor
series in ρ [43]

S2(ρ) = a4 + p0

ρ2
sat

(ρ − ρsat) + �K

18ρ2
sat

(ρ − ρsat)
2 + · · · , (20)

where the value of the asymmetry energy at the saturation
density (volume asymmetry) is denoted by a4, the parameter
p0 defines the linear density dependence of the asymmetry
energy, and �K is the correction to the incompressibility. The
asymmetry energy directly determines the difference rn–rp be-
tween the radii of the neutron and proton ground-state density
distributions. In a recent study that has analyzed available data
on neutron radii and the excitation energies of the IVGDR
in the framework of the density-dependent meson-exchange
RMF models, the volume asymmetry of RMF effective
interactions has been constrained to the following interval:
32 MeV � a4 � 36 MeV [39]. For the PC-F1 effective in-
teraction the volume asymmetry is somewhat larger: a4 =
37.8 MeV. This is also the case for older meson-exchange
RMF forces with nonlinear meson self-interaction terms and
is because of the fact that the isovector channel of these
interactions is basically parameterized by a single constant:
αTV in the point-coupling version or the ρ-meson coupling gρ

in the meson-exchange models. With a single parameter in the
isovector channel, it is simply not possible to simultaneously
lower a4 to its empirical value and reproduce the masses

of N 
= Z nuclei. This only becomes possible if a density
dependence is included in the isovector channel, as it is done
in modern density-dependent meson-exchange RMF forces
[7,8,21].

For the point-coupling effective Lagrangian Eq. (2), in
Ref. [14] it has been shown that the strength parameter δTV

of the derivative term in the isovector channel cannot be
determined from ground-state properties of finite nuclei. The
isovector channel of the point-coupling Lagrangian was also
investigated by the inclusion of the isovector-scalar terms. Two
additional interactions were generated: PC-F2, which includes
only the linear isovector-scalar term with the coupling constant
αTS, and PC-F4, which contains both the linear and derivative
isovector-scalar terms, with the corresponding parameters αTS

and δTS. In comparison to the PC-F1 interaction, however, the
χ2 for the extended sets PC-F2 and PC-F4 was reduced by less
then 1%, and it was concluded that these extensions are not well
determined by the ground-state data included in the fit. Because
properties of isovector collective modes could, in principle,
provide additional information on the isovector channel of the
effective interaction, it is interesting to compare the isovector
dipole strength distributions calculated with PC-F1, PC-F2,
and PC-F4. For 208Pb the resulting curves, shown in the
left panel of Fig. 2, are practically indistinguishable. This is
simply because the corresponding asymmetry energies begin
to differ only at densities high above the saturation density
(see Fig. 3). Conversely, because the IVGDR corresponds to a
predominantly surface mode of oscillations, the density region
which determines this resonance is located below saturation
density. This is illustrated in the right panel of Fig. 2, where we
plot the neutron, proton, and total isovector transition densities
for the peak at E = 13.0 MeV, calculated with the PC-F1
interaction. For the point-coupling Lagrangian, this means that
properties of the IVGDR do not determine more precisely the
couplings αTS and δTS.

We note that the PC-F1 interaction predicts the excitation
energy of the IVGDR in 208Pb at E = 13.0 MeV, which is
below the experimental value E = 13.3 ± 0.1 MeV [44]. This
is also the case for the lighter nuclei: 90Zr, 116Sn, 118Sn,
120Sn, and 124Sn, for which in Table III we compare the
R(Q)RPA IVGDR excitation energies with data [45]. The
fact that effective interactions with large volume asymmetry
underestimate the energy of the IVGDR has already been
demonstrated in two recent studies of the isovector dipole
response performed with nonrelativistic and relativistic RPA
[20,46].

C. The isoscalar giant quadrupole resonance

In nonrelativistic RPA calculations, the excitation energy of
the isoscalar giant quadrupole resonance (ISGQR) can be di-
rectly related to the nucleon effective mass m∗ associated with
a given interaction. For Skyrme-type effective interactions,
in particular, the excitation energy of the ISGQR exhibits a
linear dependence on m∗. The larger the effective mass (i.e., the
higher the density of states around the Fermi surface) the lower
is the calculated ISGQR excitation energy. Calculations of
both ground-state properties and ISGQR excitation energies in
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FIG. 2. The isovector dipole strength distribution (left panel) in 208Pb, calculated with the PC-F1, PC-F2, and PC-F4 effective interactions.
The experimental excitation energy of the IVGDR is denoted by the arrow. In the right panel we plot the neutron, proton, and total isovector
transition densities for the peak at E = 13.0 MeV and calculated with PC-F1.

spherical nuclei, constrain the effective mass for Skyrme-type
interactions to the interval: m∗/m = 0.8 ± 0.1 [46].

The situation is slightly more complicated in the relativistic
framework, because one finds several different quantities
denoted as the “effective mass.” The quantity that is most often
used to characterize an effective interaction is the Dirac mass

mD = m + S(r), (21)

where m is the nucleon mass and S(r) is the scalar nucleon
self-energy. The concept of the effective mass in the relativistic

framework has been extensively analyzed in Refs. [47,48]. In
particular, it has been shown that one must not identify the
Dirac mass with the effective mass of the nonrelativistic mean-
field models. Instead, the quantity that should be compared
with the empirical effective mass derived from nonrelativistic
analyses of scattering and bound-state data is given by the
following:

m∗ = m − V (r), (22)

where V (r) denotes the timelike component of the vector
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FIG. 3. The nuclear matter asymmetry en-
ergy as function of the nucleon density, cal-
culated with the PC-F1, PC-F2, and PC-F4
effective interactions.

014312-7
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TABLE III. The R(Q)RPA excitation energies of the IVGDR
in 90Zr, 116Sn, 118Sn, 120Sn, and 124Sn calculated with the PC-F1
effective interaction. The theoretical centroids are compared with
the experimental data from Ref. [45]. The centroid energy EGDR =
m1/m0 is calculated in the same energy window as the one used in
the experimental analysis (14–19 MeV for the 90Zr, and 13–18 MeV
for the tin isotopes).

PC-F1 (MeV) EXP (MeV)

90Zr 16.22 16.85
116Sn 15.34 15.68
118Sn 15.25 15.59
120Sn 15.09 15.40
124Sn 15.03 15.29

self-energy. However, both mD and m∗ are essentially deter-
mined by (i) the empirical spin-orbit splittings in finite nuclei
and (ii) the binding energy at saturation density in nuclear
matter. They place the following constraints on the effective
masses: 0.55m � mD � 0.6m and 0.64m � m∗ � 0.67m. In
comparison to the nonrelativistic self-consistent mean-field
models, the allowed values for the relativistic m∗ are rather
low, resulting in a smaller density of states around the Fermi
surface. Moreover, the allowed interval of m∗ values is so
narrow that there is no room for any significant enhancement
of the single-nucleon level densities in the framework of the
standard phenomenological RMF models [49].

These arguments are also valid for point-coupling RMF
models. Specifically, for the PC-F1 effective interaction the

TABLE IV. The R(Q)RPA excitation energies of the ISGQR
calculated with the PC-F1 effective interaction. The theoretical
m1/m0 centroids are compared with the experimental excitation
energies of the quadrupole resonances from Refs. [41] (90Zr), [40]
(116Sn, 144Sm, 208Pb), and [42] (112Sn, 124Sn).

PC-F1 (MeV) EXP (MeV)

90Zr 15.9 14.30 + 0.4 − 0.12
112Sn 15.3 13.23 + 0.18 − 0.14
116Sn 14.8 13.30 + 0.35 − 0.35
124Sn 14.6 12.81 + 0.14 − 0.10
144Sm 14.2 12.78 + 0.30 − 0.30
208Pb 12.1 10.89 + 0.30 − 0.30

Dirac mass mD = 0.61m, the effective mass m∗ = 0.69m, and
therefore one should not expect PC-F1 to accurately reproduce
data on the ISGQR. In the left panel of Fig. 4 we plot the RRPA
isoscalar quadrupole strength distribution in 208Pb, calculated
with the PC-F1 interaction. The experimental excitation energy
of the ISGQR (10.89 ± 0.3 MeV [40]) is denoted by the arrow.
Because of the low nucleon effective mass, the calculated
excitation energy of the ISGQR is above the corresponding
experimental value. Similar results are also obtained for lighter
spherical nuclei. In Table IV we display a comparison between
the experimental excitation energies and the PC-F1 predictions
for the location of the ISGQR in 90Zr, 116Sn, 112Sn, 124Sn,
144Sm, and 208Pb. For all these nuclei the calculated ISGQR
excitation energy is more than 1 MeV above the experimental
centroids m1/m0.
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FIG. 4. The isoscalar quadrupole strength distribution (left panel) and the transition densities (right panel) for 208Pb, calculated with the
PC-F1 effective interaction. The experimental excitation energy of the ISGQR is denoted by the arrow. The neutron, proton, and total isoscalar
transition densities correspond to the ISGQR peak at E = 11.9 MeV.
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IV. SUMMARY AND OUTLOOK

During the 1990s standard meson-exchange RMF models,
with either nonlinear meson self-interaction terms, or with
density-dependent meson-nucleon vertex functions, have been
very successfully applied in the description of a variety of
nuclear structure phenomena. However, the explicit inclusion
of the meson degrees of freedom, in particular of the fictitious
σ -meson, places physical constraints on the model parameters,
thereby reducing the predictive power of the model. The
limitations of the meson-exchange representation of the RMF
theory are especially pronounced in the description of surface
properties of finite nuclei. Virtually all meson-exchange RMF
effective interactions, which otherwise accurately reproduce
data on bulk nuclear properties and giant resonances, underes-
timate the empirical surface thickness. This does not seem
to be the case for the self-consistent point-coupling RMF
models, which therefore represent an interesting alternative to
the standard meson-exchange picture of the effective nuclear
interaction.

Self-consistent point-coupling RMF models have recently
attracted considerable interest. For the phenomenological
models, in particular, it has been shown that the new PC-F1
effective interaction reproduces data with a quality comparable
to that of standard meson-exchange forces. However, all
calculations performed so far have considered only ground-
state nuclear properties. It is, therefore, important to develop
a consistent microscopic framework, based on the point-
coupling RMF effective Lagrangian, in which dynamical
properties and excited states can be investigated.

In this work the matrix equations of the random-phase
approximation (RPA) have been derived for the point-coupling

Lagrangian of the (RMF) model. Fully consistent RMF plus
RPA and RHB plus QRPA illustrative calculations of the
isoscalar monopole, isovector dipole, and isoscalar quadrupole
response of spherical medium-heavy and heavy nuclei have
been performed. A comparison with experiment has shown that
the best point-coupling effective interactions, and in particular
PC-F1, accurately reproduce not only ground-state properties
but also data on excitation energies of giant resonances.
We have also investigated the possibility to determine the
parameters of the isovector-scalar channel from R(Q)RPA
calculations of the isovector dipole response. This is really
not feasible because the isovector-scalar terms influence the
symmetry energy only for nucleon densities well above the
saturation density, whereas the density region characteristic
for the IVGDR is located below the saturation density.

The R(Q)RPA based on the point-coupling RMF models
presents an important addition to the theoretical tools that are
employed in description of the nuclear many-body problem.
Future applications will include studies of the multipole
response of exotic nuclei far from the valley of β stability.
On a more microscopic level, the R(Q)RPA will be used
to investigate dynamical properties predicted by the recently
introduced relativistic point-coupling model constrained by
in-medium QCD sum rules and chiral symmetry [15–17].

ACKNOWLEDGMENTS

This work has been supported in part by the Bundesmin-
isterium für Bildung und Forschung (project 06 MT 193), by
the Alexander von Humboldt Stiftung, and by the Croatian
Ministry of Science (project 0119250).

[1] M. Bender, P.-H. Heenen, and P.-G. Reinhard, Rev. Mod. Phys.
75, 121 (2003).

[2] D. Vretenar, A. V. Afanasjev, G. A. Lalazissis, and P. Ring,
Phys. Rep. 409, 101 (2005).

[3] J. Boguta and A. R. Bodmer, Nucl. Phys. A292, 413 (1977).
[4] G. A. Lalazissis, J. König, and P. Ring, Phys. Rev. C 55, 540

(1997).
[5] C. Fuchs, H. Lenske, and H. H. Wolter, Phys. Rev. C 52, 3043

(1995).
[6] F. de Jong and H. Lenske, Phys. Rev. C 57, 3099 (1998).
[7] S. Typel and H. H. Wolter, Nucl. Phys. A656, 331 (1999).
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