79 research outputs found

    Genetic Analyses of Interactions among Gibberellin, Abscisic Acid, and Brassinosteroids in the Control of Flowering Time in Arabidopsis thaliana

    Get PDF
    Genetic interactions between phytohormones in the control of flowering time in Arabidopsis thaliana have not been extensively studied. Three phytohormones have been individually connected to the floral-timing program. The inductive function of gibberellins (GAs) is the most documented. Abscisic acid (ABA) has been demonstrated to delay flowering. Finally, the promotive role of brassinosteroids (BRs) has been established. It has been reported that for many physiological processes, hormone pathways interact to ensure an appropriate biological response.We tested possible genetic interactions between GA-, ABA-, and BR-dependent pathways in the control of the transition to flowering. For this, single and double mutants deficient in the biosynthesis of GAs, ABA, and BRs were used to assess the effect of hormone deficiency on the timing of floral transition. Also, plants that over-express genes encoding rate-limiting enzymes in each biosynthetic pathway were generated and the flowering time of these lines was investigated.Loss-of-function studies revealed a complex relationship between GAs and ABA, and between ABA and BRs, and suggested a cross-regulatory relation between GAs to BRs. Gain-of-function studies revealed that GAs were clearly limiting in their sufficiency of action, whereas increases in BRs and ABA led to a more modest phenotypic effect on floral timing. We conclude from our genetic tests that the effects of GA, ABA, and BR on timing of floral induction are only in partially coordinated action

    A Central Role of Abscisic Acid in Stress-Regulated Carbohydrate Metabolism

    Get PDF
    Background: Abiotic stresses adversely affect plant growth and development. The hormone abscisic acid (ABA) plays a central role in the response and adaptation to environmental constraints. However, apart from the well established role of ABA in regulating gene expression programmes, little is known about its function in plant stress metabolism. Principal Findings: Using an integrative multiparallel approach of metabolome and transcriptome analyses, we studied the dynamic response of the model glyophyte Arabidopsis thaliana to ABA and high salt conditions. Our work shows that salt stress induces complex re-adjustment of carbohydrate metabolism and that ABA triggers the initial steps of carbon mobilisation. Significance: These findings open new perspectives on how high salinity and ABA impact on central carbohydrate metabolism and highlight the power of iterative combinatorial approaches of non-targeted and hypothesis-driven experiments in stress biology

    Genes involved in ethylene and gibberellins metabolism are required for endosperm-limited germiantion of Sisymbrium officinales L. Seeds

    Get PDF
    The rupture of the seed coat and that of the endosperm were found to be two sequential events in the germination of Sisymbrium officinale L. seeds, and radicle protrusion did not occur exactly in the micropylar area but in the neighboring zone. The germination patterns were similar both in the presence of gibberellins (GA4+7) and in presence of ethrel. The analysis of genes involved in GAs synthesis and breakdown demonstrated that (1) SoGA2ox6 expression peaked just prior to radicle protrusion (20–22 h), while SoGA3ox2 and SoGA20ox2 expression was high at early imbibition (6 h) diminishing sharply thereafter; (2) the accumulation of SoGA20ox2 transcript was strongly inhibited by paclobutrazol (PB) as well as by inhibitors of ET synthesis and signaling (IESS) early after imbibition (6 h), while SoGA3ox2 and SoGA2ox6 expression was slowly depressed as germination progressed; (3) ethrel and GA4+7 positively or negatively affected expression of SoGA3ox2, SoGA20ox2, and SoGA2ox6, depending on the germination period studied. Regarding genes involved in ET synthesis, our results showed that SoACS7 was expressed, just prior to radicle emergence while SoACO2 expression slowly increased as germination progressed. Both genes were strongly inhibited by PB but were almost unaffected by externally added ethrel or GA4+7. These results suggest that GAs are more important than ET during the early stages of imbibition, while ET is more important at the late phases of germination of S. officinale L. seed

    Upstream regulatory architecture of rice genes: summarizing the baseline towards genus-wide comparative analysis of regulatory networks and allele mining

    Get PDF

    Toward Understanding Molecular Mechanisms of Abiotic Stress Responses in Rice

    Full text link

    Purification and characterization of a barley aleurone abscisic acid-binding protein.

    Get PDF
    A protein designated ABAP1 and encoded by a novel gene (GenBank accession number AF127388) was purified and shown to specifically bind abscisic acid (ABA). ABAP1 protein is a 472-amino acid polypeptide containing a WW protein interaction domain and is induced by ABA in barley aleurone layers. Polyclonal antiidiotypic antibodies (AB2) cross-reacted with purified ABAP1 and with a corresponding 52-kDa protein associated with membrane fractions of ABA-treated barley aleurones. ABAP1 genes were detected in diverse monocot and dicot species, including wheat, tobacco, alfalfa, garden pea, and oilseed rape. The recombinant ABAP1 protein optimally bound (3)H-(+)-ABA at neutral pH. Denatured ABAP1 protein did not bind (3)H-(+)-ABA, nor did bovine serum albumin. The maximum specific binding as shown by Scatchard plot analysis was 0.8 mol of ABA mol(-1) protein with a linear function of r(2) = 0.94, an indication of one ABA-binding site with a dissociation constant (K(d)) of 28 x 10(-9) m. ABA binding in aleurone plasma membranes showed a maximum binding capacity of 330 nmol of ABA g(-1) protein with a K(d) of 26.5 x 10(-9) m. The similarities in the dissociation constants for ABA binding of the recombinant protein and that of the plasma membranes suggest that the protein within the plasma membrane fraction is the native form of ABAP1. The stereospecificity of ABAP1 was established by the incapability of ABA analogs and metabolites, including (-)-ABA, trans-ABA, phaseic acid, dihydrophaseic acid, and (+)-abscisic acid-glucose ester, to displace (3)H-(+)-ABA bound to ABAP1. However, two ABA precursors, (+)-ABA aldehyde and (+)-ABA alcohol, were able to displace (3)H-(+)-ABA, an indication that the structural requirement of ABAP1 at the C-1 position is not strict. Our data show that ABAP1 exerts high binding affinity for ABA. The interaction is reversible, follows saturation kinetics, and has stereospecificity, thus meeting the criteria for an ABA-binding protein
    corecore