45 research outputs found

    MOABOSAURUS UTAHENSIS, N. Gen., N. SP., A New Sauropod From The Early Cretaceous (Aptian) of North America

    Full text link
    https://deepblue.lib.umich.edu/bitstream/2027.42/136227/1/Contributions32No11-Low Resolution.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/136227/2/Contributions32No11 - High Resolution.pd

    Digital dissection and three-dimensional interactive models of limb musculature in the Australian estuarine crocodile (Crocodylus porosus)

    Get PDF
    Digital dissection is a relatively new technique that has enabled scientists to gain a better understanding of vertebrate anatomy. It can be used to rapidly disseminate detailed, threedimensional information in an easily accessible manner that reduces the need for destructive, traditional dissections. Here we present the results of a digital dissection on the appendicular musculature of the Australian estuarine crocodile (Crocodylus porosus). A better understanding of this until now poorly known system in C. porosus is important, not only because it will expand research into crocodilian locomotion, but because of its potential to inform muscle reconstructions in dinosaur taxa. Muscles of the forelimb and hindlimb are described and three-dimensional interactive models are included based on CT and MRI scans as well as fresh-tissue dissections. Differences in the arrangement of musculature between C. porosus and other groups within the Crocodylia were found. In the forelimb, differences are restricted to a single tendon of origin for triceps longus medialis. For the hindlimb, a reduction in the number of heads of ambiens was noted as well as changes to the location of origin and insertion for iliofibularis and gastrocnemius externus

    Nota de abertura

    Get PDF
    info:eu-repo/semantics/publishedVersio

    Alcohol-related blackouts among college students: impact of low level of response to alcohol, ethnicity, sex, and environmental characteristics

    Get PDF
    Objective: To explore how a genetically-influenced characteristic (the level of response to alcohol [LR]), ethnicity, and sex relate to environmental and attitudinal characteristics (peer drinking [PEER], drinking to cope [COPE], and alcohol expectancies [EXPECT]) regarding future alcohol-related blackouts (ARBs). Methods: Structural equation models (SEMs) were used to evaluate how baseline variables related to ARB patterns in 462 college students over 55 weeks. Data were extracted from a longitudinal study of heavy drinking and its consequences at a U.S. university. Results: In the SEM analysis, female sex and Asian ethnicity directly predicted future ARBs (beta weights 0.10 and -0.11, respectively), while all other variables had indirect impacts on ARBs through alcohol quantities (beta weights ~ 0.23 for European American ethnicity and low LR, 0.21 for cannabis use and COPE, and 0.44 for PEER). Alcohol quantities then related to ARBs with beta = 0.44. The SEM explained 23% of the variance. Conclusion: These data may be useful in identifying college students who are more likely to experience future ARBs over a 1-year period. They enhance our understanding of whether the relationships of predictors to ARBs are direct or mediated through baseline drinking patterns, information that may be useful in prevention strategies for ARBs

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    A new specimen of the basal macronarian Camarasaurus (Dinosauria: Sauropoda) highlights variability and cranial allometry within the genus

    No full text
    Camarasaurus represents one of the most common dinosaurs from North America, and certainly a contender for one of the most abundantly represented dinosaur taxa worldwide. With numerous specimens ranging the gamut of completeness and maturity, Camarasaurus would theoretically represent a neosauropodian exemplar towards better understanding intra- and interspecific variation, dimorphism, and life history development and strategies. And yet, counterintuitively, its abundance is seemingly a deterrent for active research. Herein we describe a new specimen of Camarasaurus sp. which is most notably known from a nearly complete and articulated skull. While Camarasaurus cranial material is unquestionably the most common sauropod cranial material from North America, our understanding of the total cranial morphology is limited, and largely relies on more limited and historic specimens. In addition to further illuminating the morphology and variation present in Camarasaurus crania, associated post-crania also allow for the first recognition of possible cranial allometry. The identification of this perplexing cranial allometry in several specimens indicates that it is not a singular variation. Though this analysis was not able to source the causal mechanism, factors such as taxonomy, dimorphism, or extreme intra-/intraspecific variation are all possible considerations for future analyses. The recognition of this undocumented cranial allometry further emphasizes that despite being so numerous, there is still vast gaps in our knowledge about Camarasaurus; and this analysis further echoes that the genus is in desperate need of revision

    Digital dissection and three-dimensional interactive models of limb musculature in the Australian estuarine crocodile (Crocodylus porosus).

    No full text
    Digital dissection is a relatively new technique that has enabled scientists to gain a better understanding of vertebrate anatomy. It can be used to rapidly disseminate detailed, three-dimensional information in an easily accessible manner that reduces the need for destructive, traditional dissections. Here we present the results of a digital dissection on the appendicular musculature of the Australian estuarine crocodile (Crocodylus porosus). A better understanding of this until now poorly known system in C. porosus is important, not only because it will expand research into crocodilian locomotion, but because of its potential to inform muscle reconstructions in dinosaur taxa. Muscles of the forelimb and hindlimb are described and three-dimensional interactive models are included based on CT and MRI scans as well as fresh-tissue dissections. Differences in the arrangement of musculature between C. porosus and other groups within the Crocodylia were found. In the forelimb, differences are restricted to a single tendon of origin for triceps longus medialis. For the hindlimb, a reduction in the number of heads of ambiens was noted as well as changes to the location of origin and insertion for iliofibularis and gastrocnemius externus

    Intrinsic muscles of the forelimb: wrist extensors/flexors.

    No full text
    <p>FUL: <i>Flexor ulnaris longus</i>, ECU: <i>Extensor carpi ulnaris</i>, ECRB: <i>Extensor carpi radialis brevis</i>, ECRL: <i>Extensor carpi radialis longus</i>, FDL1-2: <i>Flexor digitorum longus</i>, FCU: <i>Flexor carpi ulnaris</i>.</p
    corecore