7,946 research outputs found

    Is there a flavor hierarchy in the deconfinement transition of QCD?

    Get PDF
    We present possible indications for flavor separation during the QCD crossover transition based on continuum extrapolated lattice QCD calculations of higher order susceptibilities. We base our findings on flavor specific quantities in the light and strange quark sector. We propose a possible experimental verification of our prediction, based on the measurement of higher order moments of identified particle multiplicities. Since all our calculations are performed at zero baryochemical potential, these results are of particular relevance for the heavy ion program at the LHC.Comment: 5 pages, 3 figures, revte

    A PNJL model in 0+1 Dimensions

    Full text link
    We formulate the Polyakov-Nambu-Jona-Lasinio (PNJL) model in 0+1 dimensions. The thermodynamics captured by the partition function yields a bulk pressure, as well as quark susceptibilities versus temperature that are similar to the ones in 3+1 dimensions. Around the transition temperature the behavior in the pressure and quark susceptibilities follows from the interplay between the lowest Matsubara frequency and the Polyakov line. The reduction to the lowest Matsubara frequency yields a matrix Model. In the presence of the Polyakov line the UV part of the Dirac spectrum features oscillations when close to the transition temperature.Comment: 18 pages, 13 figure

    Freeze-out parameters: lattice meets experiment

    Get PDF
    We present our results for ratios of higher order fluctuations of electric charge as functions of the temperature. These results are obtained in a system of 2+1 quark flavors at physical quark masses and continuum extrapolated. We compare them to preliminary data on higher order moments of the net electric charge distribution from the STAR collaboration. This allows us to determine the freeze-out temperature and chemical potential from first principles. We also show continuum-extrapolated results for ratios of higher order fluctuations of baryon number. These will allow to test the consistency of the approach, by comparing them to the corresponding experimental data (once they become available) and thus extracting the freeze-out parameters in an independent way.Comment: 5 pages, 7 figures, revte

    Freeze-out parameters from electric charge and baryon number fluctuations: is there consistency?

    Get PDF
    Recent results for moments of multiplicity distributions of net-protons and net-electric charge from the STAR collaboration are compared to lattice QCD results for higher order fluctuations of baryon number and electric charge by the Wuppertal-Budapest collaboration, with the purpose of extracting the freeze-out temperature and chemical potential. All lattice simulations are performed for a system of 2+1 dynamical quark flavors, at the physical mass for light and strange quarks; all results are continuum extrapolated. We show that it is possible to extract an upper value for the freeze-out temperature, as well as precise baryo-chemical potential values corresponding to the four highest collision energies of the experimental beam energy scan. Consistency between the freeze-out parameters obtained from baryon number and electric charge fluctuations is found. The freeze-out chemical potentials are now in agreement with the statistical hadronization model.Comment: 5 pages, 4 figures, references added, discussion added to the introduction, results unchange

    An effective thermodynamic potential from the instanton with Polyakov-loop contributions

    Full text link
    We derive an effective thermodynamic potential (Omega_eff) at finite temperature (T>0) and zero quark-chemical potential (mu_R=0), using the singular-gauge instanton solution and Matsubara formula for N_c=3 and N_f=2 in the chiral limit. The momentum-dependent constituent-quark mass is also obtained as a function of T, employing the Harrington-Shepard caloron solution in the large-N_c limit. In addition, we take into account the imaginary quark chemical potential mu_I = A_4, translated as the traced Polayakov-loop (Phi) as an order parameter for the Z(N_c) symmsetry, characterizing the confinement (intact) and deconfinement (spontaneously broken) phases. As a result, we observe the crossover of the chiral (chi) order parameter sigma^2 and Phi. It also turns out that the critical temperature for the deconfinment phase transition, T^Z_c is lowered by about (5-10)% in comparison to the case with a constant constituent-quark mass. This behavior can be understood by considerable effects from the partial chiral restoration and nontrivial QCD vacuum on Phi. Numerical calculations show that the crossover transitions occur at (T^chi_c,T^Z_c) ~ (216,227) MeV.Comment: 15 pages, 7 figure

    Fluctuations and correlations in high temperature QCD

    Get PDF
    We calculate second- and fourth-order cumulants of conserved charges in a temperature range stretching from the QCD transition region towards the realm of (resummed) perturbation theory. We perform lattice simulations with staggered quarks; the continuum extrapolation is based on Nt=10…24N_t=10\dots24 in the crossover-region and Nt=8…16N_t=8\dots16 at higher temperatures. We find that the Hadron Resonance Gas model predictions describe the lattice data rather well in the confined phase. At high temperatures (above ∼\sim250 MeV) we find agreement with the three-loop Hard Thermal Loop results.Comment: 18 pages revtex, 13 figure

    QCD transition temperature: full staggered result

    Get PDF
    We conclude our investigations on the QCD cross-over transition temperatures with 2+1 staggered flavours and one-link stout improvement. We extend our previous two studies [Phys. Lett. B643 (2006) 46, JHEP 0906:088 (2009)] by choosing even finer lattices (N_t=16) and we work again with physical quark masses. These new results [for details see JHEP 1009:073,2010] support our earlier findings. We compare them with the published results of the hotQCD collaboration. All these results are confronted with the predictions of the Hadron Resonance Gas model and Chiral Perturbation Theory for temperatures below the transition region. Our results can be reproduced by using the physical spectrum. The findings of the hotQCD collaboration can be recovered only by using a distorted spectrum. This analysis provides a simple explanation for the observed discrepancy in the transition T between our and the hotQCD collaborations.Comment: presented at the XXVIII. International Symposium on Lattice Field Theory, June 14-19,2010, Villasimius, Sardinia Ital

    Recent results on the Equation of State of QCD

    Get PDF
    We report on a continuum extrapolated result (arXiv:1309.5258) for the equation of state (EoS) of QCD with Nf=2+1N_f=2+1 dynamical quark flavors and discuss preliminary results obtained with an additional dynamical charm quark (Nf=2+1+1N_f=2+1+1). For all our final results, the systematics are controlled, quark masses are set to their physical values, and the continuum limit is taken using at least three lattice spacings corresponding to temporal extents up to Nt=16N_t=16.Comment: Conference proceedings: The 32nd International Symposium on Lattice Field Theory - Lattice 2014, June 23-28, 2014, Columbia University, New York, New Yor

    The QCD phase diagram from analytic continuation

    Get PDF
    We present the crossover line between the quark gluon plasma and the hadron gas phases for small real chemical potentials. First we determine the effect of imaginary values of the chemical potential on the transition temperature using lattice QCD simulations. Then we use various formulas to perform an analytic continuation to real values of the baryo-chemical potential. Our data set maintains strangeness neutrality to match the conditions of heavy ion physics. The systematic errors are under control up to μB≈300\mu_B\approx 300 MeV. For the curvature of the transition line we find that there is an approximate agreement between values from three different observables: the chiral susceptibility, chiral condensate and strange quark susceptibility. The continuum extrapolation is based on Nt=N_t= 10, 12 and 16 lattices. By combining the analysis for these three observables we find, for the curvature, the value κ=0.0149±0.0021\kappa = 0.0149 \pm 0.0021.Comment: 14 pages, 4 figures, revised versio
    • …
    corecore