6,446 research outputs found

    A smart end-effector for assembly of space truss structures

    Get PDF
    A unique facility, the Automated Structures Research Laboratory, is being used to investigate robotic assembly of truss structures. A special-purpose end-effector is used to assemble structural elements into an eight meter diameter structure. To expand the capabilities of the facility to include construction of structures with curved surfaces from straight structural elements of different lengths, a new end-effector has been designed and fabricated. This end-effector contains an integrated microprocessor to monitor actuator operations through sensor feedback. This paper provides an overview of the automated assembly tasks required by this end-effector and a description of the new end-effector's hardware and control software

    Structure of Mandelate Racemase with Bound Intermediate Analogues Benzohydroxamate and Cupferron

    Get PDF
    Mandelate racemase (MR, EC 5.1.2.2) from Pseudomonas putida catalyzes the Mg2+-dependent interconversion of the enantiomers of mandelate, stabilizing the altered substrate in the transition state by 26 kcal/mol relative to the substrate in the ground state. To understand the origins of this binding discrimination, we determined the X-ray crystal structures of wild-type MR complexed with two analogues of the putative aci-carboxylate intermediate, benzohydroxamate and Cupferron, to 2.2-Å resolution. Benzohydroxamate is shown to be a reasonable mimic of the transition state and/or intermediate because its binding affinity for 21 MR variants correlates well with changes in the free energy of transition state stabilization afforded by these variants. Both benzohydroxamate and Cupferron chelate the active site divalent metal ion and are bound in a conformation with the phenyl ring coplanar with the hydroxamate and diazeniumdiolate moieties, respectively. Structural overlays of MR complexed with benzohydroxamate, Cupferron, and the ground state analogue (S)-atrolactate reveal that the para carbon of the substrate phenyl ring moves by 0.8−1.2 Å between the ground state and intermediate state, consistent with the proposal that the phenyl ring moves during MR catalysis while the polar groups remain relatively fixed. Although the overall protein structure of MR with bound intermediate analogues is very similar to that of MR with bound (S)-atrolactate, the intermediate−Mg2+ distance becomes shorter, suggesting a tighter complex with the catalytic Mg2+. In addition, Tyr 54 moves closer to the phenyl ring of the bound intermediate analogues, contributing to an overall constriction of the active site cavity. However, site-directed mutagenesis experiments revealed that the role of Tyr 54 in MR catalysis is relatively minor, suggesting that alterations in enzyme structure that contribute to discrimination between the altered substrate in the transition state and the ground state by this proficient enzyme are extremely subtle

    Hyper- and suspended-accretion states of rotating black holes and the durations of gamma-ray bursts

    Full text link
    We analyze the temporal evolution of accretion onto rotating black holes subject to large-scale magnetic torques. Wind torques alone drive a disk towards collapse in a finite time ∌tffEk/EB\sim t_{ff} E_k/E_B, where tfft_{ff} is the initial free-fall time and Ek/EBE_k/E_B is the ratio of kinetic-to-poloidal magnetic energy. Additional spin-up torques from a rapidly rotating black hole can arrest the disk's inflow. We associate short/long gamma-ray bursts with hyperaccretion/suspended-accretion onto slowly/rapidly spinning black holes. This model predicts afterglow emission from short bursts, and may be tested by HETE-II.Comment: accepted for publication in the ApJ

    Theory and astrophysical consequences of a magnetized torus around a rapidly rotating black hole

    Get PDF
    (Abbrev.) We analyze the topology, lifetime, and emissions of a torus around a black hole formed in hypernovae and black hole-neutron star coalescence. The torus is ab initio uniformly magnetized, represented by two counter oriented current-rings, and develops a state of suspended accretion against a "magnetic wall" around the black hole. Magnetic stability of the torus gives rise to a new fundamental limit EB/Ek<0.1 for the ratio of poloidal magnetic field energy-to-kinetic energy. The lifetime of rapid spin of the black hole is effectively defined by the timescale of dissipation of black hole-spin energy in the horizon, and satisfies T= 40s (MH/7MSun)(R/6MH)^4(0.03MH/MT) for a black hole of mass MH surrounded by a torus of mass MT and radius R. The torus converts a major fraction Egw/Erot=0.1 into gravitational radiation through a finite number of multipole mass-moments, and a smaller fraction into MeV neutrinos and baryon-rich winds. At a source distance of 100Mpc, these emissions over N=2e4 periods give rise to a characteristic strain amplitude \sqrt{N}hchar=6e-21. We argue that torus winds create an open magnetic flux-tube on the black hole, which carries a minor and standard fraction Ej/Erot=1e-3 in baryon-poor outflows to infinity. We identify this baryon poor output of tens of seconds with GRBs with contemporaneous and strongly correlated emissions in gravitational radiation, conceivably at multiple frequencies. Ultimately, this leaves a black hole binary surrounded by a supernova remnant.Comment: To appear in ApJ (44p

    Entropic force in black hole binaries and its Newtonian limits

    Full text link
    We give an exact solution for the static force between two black holes at the turning points in their binary motion. The results are derived by Gibbs' principle and the Bekenstein-Hawking entropy applied to the apparent horizon surfaces in time-symmetric initial data. New power laws are derived for the entropy jump in mergers, while Newton's law is shown to derive from a new adiabatic variational principle for the Hilbert action in the presence of apparent horizon surfaces. In this approach, entropy is strictly monotonic such that gravity is attractive for all separations including mergers, and the Bekenstein entropy bound is satisfied also at arbitrarily large separations, where gravity reduces to Newton's law. The latter is generalized to point particles in the Newtonian limit by application of Gibbs' principle to world-lines crossing light cones.Comment: Accepted for publication in Phys. Rev.

    An inertial range length scale in structure functions

    Full text link
    It is shown using experimental and numerical data that within the traditional inertial subrange defined by where the third order structure function is linear that the higher order structure function scaling exponents for longitudinal and transverse structure functions converge only over larger scales, r>rSr>r_S, where rSr_S has scaling intermediate between η\eta and λ\lambda as a function of RλR_\lambda. Below these scales, scaling exponents cannot be determined for any of the structure functions without resorting to procedures such as extended self-similarity (ESS). With ESS, different longitudinal and transverse higher order exponents are obtained that are consistent with earlier results. The relationship of these statistics to derivative and pressure statistics, to turbulent structures and to length scales is discussed.Comment: 25 pages, 9 figure

    The Shape and Scale of Galactic Rotation from Cepheid Kinematics

    Get PDF
    A catalog of Cepheid variables is used to probe the kinematics of the Galactic disk. Radial velocities are measured for eight distant Cepheids toward l = 300; these new Cepheids provide a particularly good constraint on the distance to the Galactic center, R_0. We model the disk with both an axisymmetric rotation curve and one with a weak elliptical component, and find evidence for an ellipticity of 0.043 +/- 0.016 near the Sun. Using these models, we derive R_0 = 7.66 +/- 0.32 kpc and v_circ = 237 +/- 12 km/s. The distance to the Galactic center agrees well with recent determinations from the distribution of RR Lyrae variables, and disfavors most models with large ellipticities at the solar orbit.Comment: 36 pages, LaTeX, 10 figure

    Magellanic Cloud Periphery Carbon Stars IV: The SMC

    Full text link
    The kinematics of 150 carbon stars observed at moderate dispersion on the periphery of the Small Magellanic Cloud are compared with the motions of neutral hydrogen and early type stars in the Inter-Cloud region. The distribution of radial velocities implies a configuration of these stars as a sheet inclined at 73+/-4 degrees to the plane of the sky. The near side, to the South, is dominated by a stellar component; to the North, the far side contains fewer carbon stars, and is dominated by the neutral gas. The upper velocity envelope of the stars is closely the same as that of the gas. This configuration is shown to be consistent with the known extension of the SMC along the line of sight, and is attributed to a tidally induced disruption of the SMC that originated in a close encounter with the LMC some 0.3 to 0.4 Gyr ago. The dearth of gas on the near side of the sheet is attributed to ablation processes akin to those inferred by Weiner & Williams (1996) to collisional excitation of the leading edges of Magellanic Stream clouds. Comparison with pre LMC/SMC encounter kinematic data of Hardy, Suntzeff, & Azzopardi (1989) of carbon stars, with data of stars formed after the encounter, of Maurice et al. (1989), and Mathewson et al. (a986, 1988) leaves little doubt that forces other than gravity play a role in the dynamics of the H I.Comment: 30 pages; 7 figures, latex compiled, 1 table; to appear in AJ (June 2000

    Discovery of Extreme Examples of Superclustering in Aquarius

    Get PDF
    We report the discovery of two highly extended filaments and one extremely high density knot within the region of Aquarius. The supercluster candidates were chosen via percolation analysis of the Abell and ACO catalogs and include only the richest clusters (R >= 1). The region examined is a 10x45 degree strip and is now 87% complete in cluster redshift measurements to mag_10 = 18.3. In all, we report 737 galaxy redshifts in 46 cluster fields. One of the superclusters, dubbed Aquarius, is comprised of 14 Abell/ACO clusters and extends 110h^-1Mpc in length only 7 degrees off the line-of-sight. On the near-end of the Aquarius filament, another supercluster, dubbed Aquarius-Cetus, extends for 75h^-1Mpc perpendicular to the line-of-sight. After fitting ellipsoids to both Aquarius and Aquarius-Cetus, we find axis ratios (long-to- midlength axis) of 4.3 for Aquarius and 3.0 for Aquarius-Cetus. We fit ellipsoids to all N>=5 clumps of clusters in the Abell/ACO measured-z cluster sample. The frequency of filaments with axis ratios >=3.0 (~20%) is nearly identical with that found among `superclusters' in Monte Carlo simulations of random and random- clumped clusters, however, so the rich Abell/ACO clusters have no particular tendency toward filamentation. The Aquarius filament also contains a `knot' of 6 clusters at Z ~0.11, with five of the clusters near enough togeteher to represent an apparent overdensity of 150. There are three other R >= 1 cluster density enhancements similar to this knot at lower redshifts: Corona Borealis, the Shapely Concentration, and another grouping of seven clusters in Microscopium. All four of these dense superclusters appear near the point of breaking away from the Hubble Flow, and some may now be in collapse, but there is little evidence of any being virialized.Comment: 45 pages (+ e-tables), 7 figures, AASTeX Accepted for Publication in Ap
    • 

    corecore