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Abstract 

 
Mandelate racemase (MR, EC 5.1.2.2) from Pseudomonas putida catalyzes the Mg2+-dependent 

interconversion of the enantiomers of mandelate, stabilizing the altered substrate in the transition state by 26 
kcal/mol relative to the substrate in the ground state. To understand the origins of this binding discrimination, 
we determined the X-ray crystal structures of wild-type MR complexed with two analogues of the putative aci-
carboxylate intermediate, benzohydroxamate and Cupferron, to 2.2-Å resolution. Benzohydroxamate is shown 
to be a reasonable mimic of the transition state and/or intermediate because its binding affinity for 21 MR 
variants correlates well with changes in the free energy of transition state stabilization afforded by these 
variants. Both benzohydroxamate and Cupferron chelate the active site divalent metal ion and are bound in a 
conformation with the phenyl ring coplanar with the hydroxamate and diazeniumdiolate moieties, respectively. 
Structural overlays of MR complexed with benzohydroxamate, Cupferron, and the ground state analogue (S)-
atrolactate reveal that the para carbon of the substrate phenyl ring moves by 0.8–1.2 Å between the ground 
state and intermediate state, consistent with the proposal that the phenyl ring moves during MR catalysis while 
the polar groups remain relatively fixed. Although the overall protein structure of MR with bound intermediate 
analogues is very similar to that of MR with bound (S)-atrolactate, the intermediate–Mg2+ distance becomes 
shorter, suggesting a tighter complex with the catalytic Mg2+. In addition, Tyr 54 moves closer to the phenyl ring 
of the bound intermediate analogues, contributing to an overall constriction of the active site cavity. However, 
site-directed mutagenesis experiments revealed that the role of Tyr 54 in MR catalysis is relatively minor, 
suggesting that alterations in enzyme structure that contribute to discrimination between the altered substrate 
in the transition state and the ground state by this proficient enzyme are extremely subtle. 
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Mandelate racemase (MR, EC 5.1.2.2) from Pseudomonas putida catalyzes the Mg2+-dependent 1,1-

proton transfer that interconverts the enantiomers of mandelate via a two-base mechanism with His 297 and 
Lys 166 abstracting the α-proton from (R)-mandelate and (S)-mandelate, respectively, as shown in 
Figure 1.(1) MR is very proficient at discriminating between the substrate in the ground state and the altered 
substrate in the transition state (TS), binding the latter species with an association constant equal to 5 × 1018 M–

1 and stabilizing the TS of the reaction by 26 kcal/mol.(2, 3) Consequently, the enzyme has been studied as a 
paradigm for understanding enzyme-catalyzed abstraction of protons from carbon acids.(1, 4-7) Enzymes such 
as MR, which are extremely proficient at stabilizing the TSs and intermediates formed during catalysis, are often 
strongly inhibited by analogues of either the altered substrate in the TS or unstable intermediates that resemble 
the TS.(8-12)Our interest in understanding how binding determinants within the active site of MR stabilize the 
TS for α-proton abstraction led us to survey a series of reactive intermediate analogues as potential TS or 
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intermediate analogue inhibitors,(13-16) leading to the identification of α-hydroxybenzylphosphonate (Ki = 4.7 
μM(15)), benzohydroxamate (BzH) (Ki = 9.3 μM(15)), N-hydroxyformanilide (Ki = 2.8 μM(13)), and Cupferron 
(CfN) (Ki = 2.7 μM(13)) as potent reversible competitive inhibitors of MR. As shown in Figure 1, both BzH and CfN 
may be regarded as analogues of the aci-carboxylate intermediate. 

 
Figure 1 

 
Figure 1. Two-base mechanism for MR-catalyzed racemization of (R)- and (S)-mandelate. The molecular 
electrostatic potential surface (EPS) at the van der Waals radii for the conjugate base of Z-BzH (O-
deprotonated(34)), the putative aci-carboxylate intermediate, and the conjugate base of Z-Cupferron(51) are 
also shown. EPSs have an electron density isosurface displayed at a density of 0.002 e/ao

3 that encompasses 
approximately 95% of the van der Waals radii.(52) The energy difference from the red (negative potentials) to 
blue (more electropositive potentials) regions of the EPSs is 150 kcal/mol, with the more electropositive 
potential fixed at an upper limit of −50 kcal/mol for all molecules. Geometry optimizations and ESPs were 
calculated using the density functional B3LYP/6-311+G** method with Spartan’04 Windows version 1.0.1 
(Wavefunction, Inc., Irvine, CA). 
 

Herein, we report a critical analysis of TS mimicry by BzH along with the first structures of MR 
complexed with the intermediate analogues BzH and CfN. The primary determinant of high-affinity binding in 
MR originates from the coordination of Mg2+ in the active site. The hydrophobic pocket surrounding the 
aromatic ring constricts around the intermediate analogues, consistent with the contribution of this region to TS 
stabilization. In general, however, there appear to be few specific enhanced contacts with analogues of the aci-
carboxylate intermediate. 

Materials and Methods 
General 

(R)- and (S)-Mandelic acid, benzohydroxamate, and all other reagents, unless mentioned otherwise, 
were purchased from Sigma-Aldrich Canada Ltd. (Oakville, ON). Cupferron (NH4

+salt) was purchased from Fisher 
Scientific (Ottawa, ON). Circular dichroism (CD) assays and spectral measurements were conducted using a 
JASCO J-810 spectropolarimeter. DNA oligonucleotide primers were obtained from Integrated DNA Technologies 
(Coralville, IA, USA) and restriction endonucleases were purchased from New England Biolabs (Ipswich, MA, 
USA). 

Enzyme Purification 
For X-ray crystallography studies, recombinant MR from P. putida was overproduced in and purified 

from Escherichia coli BL21(DE3) cells transformed with the pET-52b(+)-WTMR plasmid, a pET-52b(+) plasmid 
(Novagen, Madison, WI) containing the MR open reading frame (ORF).(17) This construct encodes the MR gene 
product (MASWSHPQFEKGALEVLFQGPGYHM1...MR) with an N-terminal StrepII tag (underlined; M1represents 
the first amino acid of wild-type MR). The enzyme was purified by affinity chromatography using Strep-Tactin 
Superflow resin (IBA GmbH, Göttingen, Germany) as described previously.(17) Upon elution from the column, 
the enzyme was dialyzed against storage buffer [HEPES buffer (100 mM, pH 7.5) containing MgCl2 (3.3 mM), 
NaCl (200 mM), and glycerol (10%, v/v)] and stored at −20 °C. Four or five enzyme preparations were then 
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pooled, dialyzed against HEPES buffer (50 mM, pH 7.5) containing MgCl2 (3.3 mM) and NaCl (50 mM), and 
concentrated to ∼10 mg/mL using an Amicon Ultracel-10K centrifugal filter unit (Fisher Scientific). The tag was 
not removed from the enzyme, and the enzyme preparation was immediately frozen as 50 μL aliquots in thin-
walled, 250 μL polypropylene microcentrifuge tubes in liquid nitrogen and stored at −80 °C. 

Site-Directed Mutagenesis 
With the exception of the Y54F and Y54L variants, mutant MRs bearing an N-terminal hexahistidine tag 

were prepared and purified as described previously.(15, 18-20) For the Y54F and Y54L MRs, the pET-52b(+)-
WTMR plasmid was used as the template for polymerase chain reaction-based site-directed mutagenesis using 
the QuikChange Site-Directed Mutagenesis Kit (Stratagene, La Jolla, CA) and following the protocols described by 
the manufacturer. The forward (F) and reverse (R) synthetic deoxyoligonucleotide primers used to incorporate 
the desired mutation into the ORFs encoding the Y54F and Y54L MRs are listed in Table S1 of the Supporting 
Information. After site-directed mutagenesis, mutant plasmids were used to transform competent E. coli DH5α 
cells for plasmid maintenance. Each mutant ORF was sequenced using commercial automated DNA sequencing 
(Robarts Research Institute, London, ON) to ensure that no other alterations in the nucleotide sequence had 
been introduced. E. coli BL21(DE3) cells were used as the host for target gene expression, and the overproduced 
StrepII-tagged mutant MRs were purified as described previously.(17) 

Enzyme Assays 
MR activity was assayed using a CD-based assay by following the change in ellipticity of mandelate at 

262 nm with a 1 cm light path (unless otherwise indicated) as described by Sharp et al.(21) All assays were 
conducted at 25 °C in Na+-HEPES buffer (0.1 M, pH 7.5) containing MgCl2 (3.3 mM, unless mentioned otherwise) 
and bovine serum albumin (BSA, 0.005%). The concentrations of (R)- and (S)-mandelate for assays of all mutant 
MR enzymes ranged between 0.25 and 10.0 mM. 

Competitive inhibition experiments with BzH were conducted in Na+-HEPES buffer (0.1 M, pH 7.5) 
containing MgCl2 (3.3 mM, unless mentioned otherwise) and (R)-mandelate (0.5–20.0 mM). Enzyme 
concentrations and assay details have been described previously.(15, 18-20)For the inhibition experiments, the 
following concentrations of the mutant enzyme and BzH were used: 150 ng/mL and 20, 40, and 60 μM, 
respectively, for the wild-type; 158 ng/mL and 10, 20, 30, and 40 μM, respectively, for Y54F; 321 ng/mL and 25, 
50, and 75 μM, respectively, for Y54L (using a cuvette with a 0.5 cm light-path); 300 ng/mL and 200, 400, and 
600 μM, respectively, for V22A; 150 ng/mL and 20, 40, and 60 μM, respectively, for V22I; 300 ng/mL and 100, 
200, and 400 μM, respectively, for V22F; 450 ng/mL and 100, 200, and 300 μM, respectively, for T24S; 500 
ng/mL and 200, 400, and 600 μM, respectively, for A25V; 150 ng/mL and 25, 50, and 75 μM, respectively, for 
V26A; 450 ng/mL and 200, 400, and 600 μM, respectively, for V26L; 450 ng/mL and 300, 500, and 700 μM, 
respectively, for V26F; 500 ng/mL and 50, 100, and 200 μM, respectively, for V26A/V29L; 150 ng/mL and 150, 
300, and 600 μM, respectively, for V29A; 150 ng/mL and 20, 40, and 80 μM, respectively, for V29L; and 450 
ng/mL and 60, 90, and 120 μM, respectively, for V29F. Inhibition constants (Ki) were determined by fitting the 
initial velocity data to eq 1 using nonlinear regression analysis and KaleidaGraph version 4.02 from Synergy 
Software (Reading, PA). All kinetic parameters were determined in triplicate, and average values are reported. 
The reported errors are standard deviations. The concentrations of variant MRs were determined using either 
the Bio-Rad protein assay (Bio-Rad Laboratories, Mississauga, ON) with BSA standards or from their absorbance 
at 280 nm using extinction coefficients of 53400 M–1 cm–1 (wild-type) and 51910 M–1 cm–1 (Y54F and Y54L) that 
were calculated using the ProtParam tool available on the ExPASy server 
(http://web.expasy.org/protparam).(22) 
 

𝑣𝑣𝑖𝑖 =
𝑉𝑉max[S]

𝐾𝐾m(1 + [I]/𝐾𝐾𝑖𝑖) + [S] 

(1) 
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Protein Crystallization 
Crystals of the BzH and CfN complexes with MR were grown by the hanging drop vapor diffusion method 

against a 500 μL reservoir volume. The protein solution and reservoir solution were mixed in a 1:1 ratio to a final 
volume of 4 μL. Crystals grew spontaneously at 21 °C and ∼50% humidity. 

MR with BzH 
For the MR crystals grown in the presence of BzH, the reservoir solution consisted of PEG 1500 (14%), 

glycine (200 mM), NaI (50 mM), and triethanolamine buffer (100 mM, pH 8.0). The protein solution consisted of 
6.4 mg/mL MR purified as described above, MgCl2 (3.3 mM), BzH (2 mM), and HEPES buffer (50 mM, pH 7.5). 
The resulting cubelike crystals (∼65 μm × 65 μm × 40 μm) grew to full size within 5–10 days. After 15 days, the 
crystals were harvested and transferred to a synthetic stabilizing solution consisting of PEG 1500 (24%), glycine 
(210 mM), NaI (50 mM), BzH (2 mM), and triethanolamine buffer (80 mM, pH 8.0). These stabilized crystals were 
transferred in four successive steps to a cryoprotectant solution at ratios of 3:1, 1:1, 1:3, and 0:4 
(synthetic:cryoprotectant), with an equilibration time of 5–10 min between transfers. The cryoprotectant 
consisted of PEG 1500 (38%), glycine (210 mM), NaI (50 mM), BzH (3 mM), and triethanolamine buffer (80 mM, 
pH 8.0). The cryoprotected crystals were flash-cooled in a nitrogen gas stream at 100 K. 

MR with CfN 
For the MR crystals grown in the presence of CfN, the reservoir solution consisted of PEG 1500 (20%), 

glycine (120 mM), NaI (50 mM), and Bis-tris propane buffer (100 mM, pH 9.3). The protein solution consisted of 
6.4 mg/mL MR purified as described above, MgCl2 (3.3 mM), CfN (2 mM), and HEPES buffer (50 mM, pH 7.5). The 
resulting cubelike crystals (∼65 μm × 65 μm × 40 μm) grew to full size within 5–10 days. After 38 days, the 
crystals were harvested and transferred directly to a cryoprotectant solution consisting of PEG 1500 (44%), 
glycine (150 mM), CfN (2 mM), and Bis-tris propane buffer (100 mM, pH 9.3), with an equilibration time of 5–10 
min. The cryoprotected crystals were flash-cooled in a nitrogen gas stream at 100 K. 

Data Collection, Structure Determination, and Refinement 
X-ray diffraction data were collected at the Advanced Photon Source (APS) beamline LS-CAT-21-ID-F on a 

Rayonix MarMosaic 225 CCD detector, with an X-ray wavelength of 0.978 Å. Diffraction images were processed 
using HKL2000.(23) The structures were determined by molecular replacement using the wild-type MR enzyme 
[Protein Data Bank (PDB) entry 2MNR] as the search model with Phaser.(24) The molecular replacement models 
were extended by several rounds of manual model building with COOT(25) and refinement with 
REFMAC(26) using a geometric/X-ray weighting term of 0.2. Noncrystallographic restraints between each 
monomer were applied for the first round of refinement but were relieved for subsequent rounds. Water 
molecules were added to the model in COOT with subsequent manual verification. CfN ligand coordinates were 
generated and optimized for structure refinement using electronic ligand building and optimization workbench 
(eLBOW).(27) Data collection and processing statistics are summarized in Table 1. 

 
Table 1. Data Collection and Refinement Statistics 

  MR–BzHa MR–CfNa 
PDB entry 3UXK 3UXL 
space group I4 I4 
cell dimensions     
a, b, c (Å) 148, 148, 170 148, 148, 175 
α, β, γ (deg) 90, 90, 90 90, 90, 90 
resolution range (Å) 50.0–2.20(2.24–2.20) 50.0–2.20(2.24–2.20) 
redundancy 7.6 (7.1) 4.2 (3.8) 
completeness (%) 100 (100) 100 (100) 
no. of unique reflections 92311 95130 
Rmerge (%) 10.5 (25.3) 8.5 (31.7) 
average I/σ 28.0 (8.3) 17.5 (3.6) 
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Refinement   
resolution range (Å) 50.0–2.20(2.26–2.20) 50.0–2.20(2.26–2.20) 
Rcryst 0.162 (0.171) 0.182 (0.205) 
Rfree 0.193 (0.204) 0.227 (0.249) 
no. of protein atoms 11529 11280 
no. of water molecules 749 565 
Wilson B value (Å2) 27.7 32.8 
average B factor (Å2)     
protein 17.2 24.5 
ligands 40.7 37.9 
Mg2+ 12.7 15.4 
solvent 21.0 25.3 
Ramachandran plot (%)     
most favored 90.6 90.6 
additionally allowed 8.7 8.7 
generously allowed 0.3 0.3 
disallowed 0.3 0.3 
rmsd     
bond lengths (Å) 0.014 0.015 
bond angles (deg) 1.355 1.641 

aValues in parentheses are for the highest-resolution bin. 

Results and Discussion 
Transition State Mimicry 

Hydroxamates have been used as structural mimics of aci-carboxylate intermediates in the 
characterization of several enolase superfamily enzymes.(28-31) BzH is a structural and electronic mimic of 
the aci-carboxylate intermediate and is bound by MR with an affinity that is 100-fold greater than that exhibited 
for the substrate.(15) The high binding affinity of BzH, however, is not sufficient evidence to classify BzH as a TS 
analogue. The degree to which an intermediate/TS analogue mimics the structural and electronic character of 
the true TS can be assessed by comparing the effects of equivalent structural perturbations on the binding 
affinity of the altered substrate in the TS (via effects on kcat/Km) and on the binding affinity of the putative TS 
analogue (via effects on Ki).(32, 33) On the basis of eq 2 
 

log �
𝑘𝑘cat
𝐾𝐾m

� = log𝑘𝑘non + log �
1
𝐾𝐾tx

� 

(2) 
 
where knon is the first-order rate constant for reaction in the absence of enzyme and Ktx is the virtual dissociation 
constant for the enzyme–substrate complex in the TS, a correlation between the free energy change 
accompanying inhibitor binding (from 1/Ki values) and the relative free energies of activation 
(from kcat/Km values) for a variety of mutant enzymes catalyzing the same reaction is expected.(32, 33) If a TS 
analogue inhibitor captures a significant portion of the binding free energy expected for the altered substrate in 
the TS, then the observed binding affinity, Ki, should approximate Ktx. Table 2 shows the values of Km, kcat, 
and kcat/Km for wild-type MR and 20 variants along with the competitive inhibition constants for inhibition of 
these enzymes by BzH. The linear free energy relationship relating the relative free energies of activation for the 
wild-type and variant enzymes to the corresponding free energies of BzH binding is shown in Figure 2A. While 
the slope is unity, the correlation is weak (r2 = 0.74). However, the linear free energy relationship relating the 
relative free energies of substrate binding (from 1/Km values) to free energies of inhibitor binding (Figure 2B) has 
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a slope of only 0.25 and a much weaker correlation (r2 = 0.14), showing that BzH does indeed exhibit mimicry of 
the altered substrate in the TS and is not simply acting as a ground state analogue. A detailed analysis of the 
linear free energy relationship has not been performed for CfN. However, it is isosteric and isoelectronic with 
BzH (Figure 1) and is bound by the enzyme with high affinity.(13) On this basis, and given that it is bound by MR 
in a manner analogous to that of BzH (vide infra), CfN may also be regarded as a mimic of the aci-carboxylate 
intermediate. 
 
Figure 2 

 
Figure 2. Linear free energy relationships between Ki values for the competitive inhibition of MR variants by 
benzohydroxamate and the corresponding kcat/Km (A) and Km (B) values for the variants. The curves shown are 
the linear regression lines with values for the slope, y-intercept, and correlation coefficient (r2) equal to 1.01 ± 
0.14, 0.65 ± 0.54, and 0.7379, respectively, for panel A and 0.25 ± 0.14, 1.72 ± 0.56, and 0.1406, respectively, for 
panel B. 
 
Table 2. Kinetic Constants (kcat, Km, and kcat/Km) and Competitive Inhibition Constants (Ki) for the Inhibition of 
MR Variants by Benzohydroxamatea 

  kinetic constants (R → S)     
  Km (mM) kcat (s–1) kcat/Km(M–1 s–1) Ki (μM) 
wild-typeb 1.20 ± 0.04 552 ± 6 (4.6 ± 0.2) × 105 11.7 ± 1.2 
  (0.97 ± 0.09)c (470 ± 10)c (4.8 ± 0.3) × 105c   
Y54F 1.02 ± 0.06 456 ± 16 (4.5 ± 0.3) × 105 13.0 ± 1.1 
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  (0.90 ± 0.08)c (397 ± 21)c (4.4 ± 0.5) × 105c   
Y54L 2.0 ± 0.2 253 ± 4 (1.3 ± 0.1) × 105 25.7 ± 1.9 
  (2.3 ± 0.3)c (301 ± 9)c (1.3 ± 0.2) × 105c   
V22Ab 4.4 ± 0.7 82 ± 3 (1.9 ± 0.2) × 104 1080 ± 460 
V22Ib,d 2.9 ± 0.3 (1.15 ± 0.05) × 103 (4.0 ± 0.4) × 105 29.2 ± 5.2 
V22Fb 4.4 ± 0.3 98 ± 3 (2.2 ± 0.2) × 104 229.0 ± 86.6 
T24Sb 2.8 ± 0.2 102 ± 2 (3.7 ± 0.2) × 104 209.5 ± 9.9 
A25Vb 1.1 ± 0.2 13 ± 1 (1.2 ± 0.1) × 104 610.6 ± 12.2 
V26Ab 0.91 ± 0.05 304 ± 3 (3.3 ± 0.2) × 105 69.3 ± 2.2 
V26Lb 1.7 ± 0.1 36 ± 4 (2.1 ± 0.2) × 104 440.4 ± 26.9 
V26Fb 1.8 ± 0.1 33 ± 1 (1.8 ± 0.1) × 104 461.6 ± 31.7 
V26A/V29Lb 1.4 ± 0.1 106 ± 0.4 (7.5 ± 0.5) × 104 79.2 ± 3.6 
V29Ab 5 ± 1 (2.4 ± 0.2) × 102 (4.4 ± 0.4) × 104 178.6 ± 23.3 
V29Lb 1.7 ± 0.2 (3.0 ± 0.1) × 102 (2.6 ± 0.3) × 105 12.5 ± 1.8 
V29Fb 0.9 ± 0.1 53 ± 1 (5.7 ± 0.7) × 104 40.1 ± 0.2 
V29De 63 ± 6 19 ± 2 (3.1 ± 0.4) × 102 2900 ± 700 
N197Af 5.40 ± 0.66 16.9 ± 3.5 (3.1 ± 0.7) × 103 216 ± 6 
E317Qe 1.10 ± 0.07 0.18 ± 0.05 (1.6 ± 0.5) × 104 760 ± 31 
F52Wg 2.5 ± 0.1 159 ± 17 (6.4 ± 0.5) × 104 63 ± 10 
Y54Wg,h 1.1 ± 0.1 10 ± 1 (9.3 ± 0.4) × 103 110 ± 10 
F52W/Y54Wg 0.29 ± 0.03 1.0 ± 0.1 (3.5 ± 0.1) × 103 640 ± 190 

aValues are means of triplicate trials, and reported errors are standard deviations. 
bKinetic constants kcat, Km, and kcat/Km are from ref 20. 
cKinetic parameters in the S → R direction. 
dKinetic parameters determined using 20 mM Mg2+. 
eValues of kcat, Km, kcat/Km, and Ki are from ref 18. 
fValues of kcat, Km, kcat/Km, and Ki are from ref 15. 
gValues of kcat, Km, kcat/Km, and Ki are from ref 19. 
hKinetic constants determined using 15 mM Mg2+. 
 

BzH possesses two sites of deprotonation (i.e., oxygen and nitrogen); therefore, several structures may 
exist in solution. This is also the case for CfN. In water, BzH exists primarily in the keto form, and experimental 
evidence suggests that BzH undergoes O-deprotonation in water,(34) yielding a species that does not closely 
resemble the putative aci-carboxylate intermediate. The pH dependence of BzH inhibition of MR is consistent 
with the deprotonated form of BzH being preferentially bound by the enzyme.(15) The O-deprotonated enol 
form of BzH has never been observed in water; however, this form of BzH (cis or trans) more closely resembles 
the structure of the putative aci-carboxylate intermediate and may therefore be preferentially stabilized within 
the active site of MR.(15) 

While BzH and CfN embody certain features of the high-energy intermediate, they are not perfect 
analogues of the TS for several reasons. First, the electrostatic potential surfaces of BzH and CfN do not perfectly 
mimic the putative intermediate (Figure 1). Second, BzH and CfN lack an oxygen that is present in the aci-
carboxylate intermediate, which does impose a limitation on our structural analysis. Gerlt and Gassman(6) have 
suggested that the most effective TS analogue inhibitors for MR will have pKa values that match that of the 
intermediate. According to Gerlt and Gassman, the pKa of the neutral intermediate is critical to the formation of 
a short, strong H-bond between the general acid catalyst Glu 317 and the intermediate, which stabilizes the 
intermediate and thereby lowers its energy. If, indeed, formation of a short, strong H-bond with Glu 317 
dominates the stabilization of the intermediate, then this may limit the extent of mimicry afforded by BzH and 
CfN. In our structures, the intermediate analogues do not interact with Glu 317 because the hydroxamate and 
diazeniumdiolate groups of BzH and CfN, respectively, assume a cis geometry and chelate the Mg2+ within the 
enzyme’s active site (vide infra). Even if BzH and CfN were bound with the trans geometry permitting interaction 
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with Glu 317, their respective pKa values of 8.8(34, 35) and 4.2(36-38) are several units removed from the pKa of 
Glu 317 (estimated to be ∼6 in MR(6, 39)). Although the inability of BzH to interact with Glu 317 may attenuate 
the degree to which BzH serves as a perfect mimic of the aci-carboxylate intermediate/TS, the linear free energy 
relationship and structural features of BzH indicate that BzH does respond to changes in TS stabilization afforded 
by MR variants. 

General Description of MR Structure 
MR is composed of three distinct structural domains:(40) an N-terminal capping domain consisting of a 

three-stranded β-sheet with an antiparallel four-α-helix bundle, a central domain consisting of a (β/α)7 β-barrel, 
and a short C-terminal domain composed of external β-strands. As with all TIM-barrel enzymes, the active site is 
located at the C-terminal ends of the β-strands near the mouth of the barrel. The majority of residues involved 
in ligand binding, metal ion coordination, and catalysis extend from the β-strands of the barrel.(41-43)Residues 
located in the N-terminal capping domain form a hydrophobic cavity that contributes to substrate specificity. 
This cavity may be partitioned into an R-specific and S-specific pocket (Figure 3) where the phenyl group of (R)- 
and (S)-mandelate, respectively, is bound upon entering the active site.(19, 20) Existing X-ray crystal structures 
include inorganic sulfate,(40) (S)-mandelate,(41) or the substrate analogue (S)-atrolactate(42-44) bound in the 
active site, but there is no structural information available regarding the binding orientation of the planar aci-
carboxylate intermediate in the active site. 

 
Figure 3 

 
Figure 3. Stereoview of the representative active site architecture of MR with Mg2+ and (S)-atrolactate [(S)-atro] 
bound in the enzyme active site (PDB entry 1MDR). The active site has been proposed to include an R-specific 
pocket and an S-specific pocket, which bind the phenyl group of (R)- and (S)-mandelate, respectively.(19, 
46) The S-specific pocket is composed of residues from the 50s loop (colored yellow) and residues 90–95 of a 
neighboring subunit (colored green). The R-specific pocket is comprised primarily of residues in the 20s loop 
(colored yellow). The phenyl ring must translocate between the R- and S-specific pockets during catalysis 
(see Results and Discussion). 
 

The X-ray crystal structures of MR complexed with the intermediate analogues, BzH and CfN, were each 
determined to 2.2-Å resolution. In both structures, MR is a homo-octamer generated from a tetramer of dimers. 
Each dimer pair is generated through a tight association between neighboring subunits, with both members of 
the pair contributing residues to the neighboring active site.(40) Unlike previously reported MR crystal 
structures, both of the current structures were determined from crystals in space group I4 and included two 
separate dimers in the asymmetric unit. Each dimer forms an independent octamer through crystallographic 
symmetry (Figure S1 of the Supporting Information). The two dimers are nearly identical; the only differences 
between them are two slight twists in the first and second helices of the (β/α)7 β-barrel (Figure S2 of 
the Supporting Information). This small difference between the two octamers is sufficient to render the 
symmetry noncrystallographic but does not influence the packing of the octamer or the conformation in the 
individual active sites. Consequently, descriptions of intermediate analogue binding are limited to one 
representative active site, with all other active sites being identical in their interactions. 
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Structures of BzH and CfN in the Active Site 
The electron density for the BzH and CfN ligands is well-defined over the entire molecule in all four 

active sites, though the carbon atoms in the aromatic ring of BzH have higher relative temperature factors than 
the rest of the molecule (Figure 4). The root-mean-square deviations (rmsds) for structural alignments of the 
chain A α-carbon atoms of MR bound to (S)-atrolactate (PDB entry 1MDR) with MR bound to BzH and CfN are 
0.32 and 0.38 Å, respectively. The rmsds for alignment of the chain A α-carbon atoms of the apo MR structure 
(PDB entry 2MNR) with the structures of MR bound to BzH and CfN are 0.32 and 0.36 Å, respectively. Hence, 
there is no crystallographic evidence of large structural changes accompanying the enzyme’s transition from the 
unbound state to the (S)-atrolactate-bound ground state to the intermediate-bound state. There are also no 
gross differences in the conformation of the 20s or 50s loops between the ground state-bound and 
intermediate-bound structures (Figure 5B). Indeed, comparison of the structures of MR complexed with the 
ground state analogue (S)-atrolactate with the structures of MR complexed with the intermediate analogues BzH 
and CfN reveals that the positions of only a few amino acid side chains are altered. Relative to its position in the 
(S)-atrolactate-bound structure, Lys 166, the S-specific general base catalyst, moves closer to the α-carbon of 
the planar intermediate analogues (Figure 5A). Because MR is a pseudosymmetric enzyme(45) with kcat values in 
the S → R and R → S directions being approximately equal, one would anticipate that both Lys 166 and His 297 
would be in nearly equal proximity to the α-carbon of the aci-carboxylate intermediate and equally poised to 
protonate it (Figure 1). The structure of MR with bound BzH is in agreement with this expectation, and this is the 
first structure of liganded MR in which the ζ- and ε2-nitrogens of Lys 166 and His 297 are positioned equidistant 
from the α-carbon of the ligand (i.e., 3.3 and 3.4 Å, respectively). The general acid/base catalysts are also in 
nearly equal proximity to the nitrogen atom attached to the phenyl ring of CfN, with distances of 3.2 and 3.4 Å 
to the ζ- and ε2-nitrogens of Lys 166 and His 297, respectively (data not shown). The equal distance of the 
general acid/base catalytic residues from the α-carbon equivalent of the intermediate analogues suggests that 
these structures provide a genuine snapshot of the conformation of MR attained upon binding the aci-
carboxylate intermediate during catalysis. Alternatively, the position of the Lys 166 side chain observed in these 
structures may represent the bona fide position of the S-specific general base throughout catalysis. In previous 
structures of MR complexed with (S)-atrolactate,(42-44)steric interactions between the Lys 166 side chain and 
the α-methyl group of (S)-atrolactate may have pushed the side chain of Lys 166 farther from the substrate than 
may truly be the case when the (S)-mandelate substrate is bound. 

 
Figure 4 

 
Figure 4. Representative simulated annealing omit maps for Mg2+–BzH (A) and Mg2+–CfN (B) complexes in the 
active site of MR. The electron density maps are contoured at 3.0σ and extend to a distance of 7 Å from the 
ligand. 
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Figure 5 

 
Figure 5. Side chain movements associated with intermediate analogue binding. (A) Structural overlay of the 
MR–BzH complex with the MR–(S)-atrolactate complex (PDB entry 1MDR). The catalytic amino acid side chain 
positions are colored gray for the structure in the presence of (S)-atrolactate and blue for the structure in the 
presence of BzH. The S-specific general base catalyst, Lys 166, is repositioned in the presence of the planar 
intermediate analogue such that the ζ-nitrogen is 3.3 Å from the α-carbon of BzH. This distance is equal to that 
of the R-specific general base catalyst, His 297, from the α-carbon of BzH. (B) Structural overlay of the MR–BzH 
complex (green), the MR–CfN complex (orange), and the MR–(S)-atrolactate complex (PDB entry 1MDR, gray). 
Both Tyr 54 and Phe 52 move closer to the intermediate analogues, providing structural evidence of a more 
constrained hydrophobic cavity in the intermediate-bound state. The 20s and 50s loops are colored yellow and 
pink, respectively. These loops do not exhibit any significant motion accompanying the binding of the planar 
intermediate analogues. (C) Stereoview illustrating the variation in active site cavities in the 1MDR (white), BzH 
(pink), and CfN (green) dimers. The decrease in the cavity volume of the intermediate analogue structures 
comes from movement of the Lys 166 side chain along with a slight inward movement of the backbone chain 
connecting the end of this β-strand to the subsequent α-helix, and from a general constriction of the 
hydrophobic cavity. Cavity volumes were calculated with a water probe at the van der Waals radius of 1.4 Å 
using VOIDOO.(47) All calculations were performed on a single active site with the ligand and Mg2+removed and 
the contribution to the active site from the dimerization interface included. In all cases, the cavity search was 
initiated at the equivalent of the β-carbon position of (S)-atrolactate in chain A, after all PDB files had been 
structurally overlaid for chain A. The calculated protein surface lining the 1MDR cavity (over a 14 Å × 14 Å × 12 Å 
grid map) is displayed as a partially translucent white isosurface. The yellow mesh illustrates the active site 
cavity in 1MDR, the green mesh that in the MR–CfN complex, and the pink mesh that in the MR–BzH complex. 
(S)-Atrolactate is illustrated as yellow sticks. All residues lining the cavity are shown and labeled. Leu 93′ from 
the neighboring chain can be seen behind (S)-atrolactate and, for the sake of clarity, is not labeled. 
 

Hydrophobic effects contribute to TS stabilization by MR,(46) suggesting a possible role for hydrophobic 
cavity residues in specifically stabilizing the altered substrate in the TS. However, no major changes in the 
positions of hydrophobic amino acid side chains located in the hydrophobic cavity can be confidently identified 
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in the structures of MR with either bound CfN or BzH at 2.2-Å resolution. That said, Tyr 54, which is part of the 
50s loop of the S-specific pocket,(19) does appear to change its orientation slightly in the intermediate-bound 
state, moving closer to the phenyl ring of BzH and CfN, thereby raising the possibility that it may interact with 
the phenyl ring of the aci-carboxylate intermediate during catalysis (Figure 5B). To assess whether Tyr 54 plays a 
specific role in TS stabilization by MR, the Y54F and Y54L mutants were generated and the impact of these 
mutations on the interconversion of (R)- and (S)-mandelate was determined. Relative to those of wild-type MR, 
the Y54F mutation had negligible effects on the values of Km, kcat, and kcat/Km when either (R)- or (S)-mandelate 
was the substrate, and the binding affinity of BzH was not altered significantly for this mutant (Table 2). Hence, 
interactions with the hydroxyl group of Tyr 54 do not play a significant role in TS stabilization. If the aromatic 
ring of Tyr 54 plays a specific role in TS stabilization, then the Y54L mutation should exhibit a much more 
significant effect on kcat/Km than on Km for (R)- and (S)-mandelate. Conversely, if Tyr 54 contributes generally to 
the packing of the hydrophobic cavity, the Y54L mutation is expected to have an effect on both substrate 
binding [manifested in Km for (R)- and (S)-mandelate, because Km = Ks for MR(3)] and TS stabilization (manifested 
in kcat/Km). The Y54L mutation results in an ∼2-fold increase in Kmover that of the wild-type enzyme and a 3.5-
fold decrease in kcat/Km when either (R)- or (S)-mandelate is the substrate (Table 2). Interestingly, the effect of 
the Y54L mutation on the steady state kinetic parameters is much smaller than the effect observed upon 
mutation of several other hydrophobic pocket residues (Table 2). Thus, the motion of the Tyr 54 side chain is 
likely a consequence of altered packing rearrangements in the hydrophobic pocket rather than a result of a 
specific role for Tyr 54 in TS stabilization. Nevertheless, the movement of Tyr 54 combined with a modest 
movement of other hydrophobic cavity side chains such as Phe 52 (Figure 5B) suggests that the entire 
hydrophobic cavity may contract around the planar intermediate. Indeed, estimation of the size of the 
hydrophobic cavity using VOIDOO (http://xray.bmc.uu.se/usf/voidoo.html)(47) indicates that the size of the 
hydrophobic cavity shrinks from approximately 39 Å3 in the MR–(S)-atrolactate complex (PDB entry 1MDR) to 
approximately 29 and 25 Å3 in the MR–BzH and MR–CfN complexes, respectively (Figure 5C). Much of this 
reduction in cavity volume results from the movement of Lys 166, but there is also a notable reduction in the 
cavity volume of the hydrophobic pocket. These observations are in accord with the observed contribution of 
hydrophobic interactions to TS stabilization.(46) 

The structures of MR with BzH and CfN also suggest enhanced coordination of Mg2+ by the intermediate 
analogues relative to the ground state analogue (S)-atrolactate. BzH and CfN are bound in nearly equivalent 
positions and conformations in the enzyme active site, though the two ligands pivot slightly about the central α-
carbon, resulting in a modest deviation in the position of the aromatic ring in the hydrophobic cavity (Figure 5B). 
The ligand atoms responsible for chelating Mg2+ are also in nearly identical positions between the structures of 
MR with bound intermediate and ground state analogues (Figure 6). Superposition of the structures of MR 
complexed with BzH, CfN, and (S)-atrolactate reveals that, while the enzyme residues responsible for chelating 
Mg2+ do not undergo changes in their position or orientation, the distances between the chelating oxygen atoms 
of these compounds and the Mg2+ ion do vary. The distances between the Mg2+ and the chelating oxygen atoms 
of the carboxylate and hydroxyl groups of (S)-atrolactate are 2.2 and 2.3 Å, respectively, and the corresponding 
distances in the BzH and CfN complexes are 2.2 and 2.1 Å, respectively, and 2.0 and 2.1 Å, respectively. The 
decreased distances between the chelating oxygens of BzH and CfN and the Mg2+ ion suggest that the 
interaction with the Mg2+ ion is stronger than that in the ground state structure. Thus, some portion of the 
enhanced binding affinity observed for both BzH and CfN may result from their higher relative affinity for 
Mg2+ as compared to those of ground state ligands.(35, 48) Although the enhanced binding of BzH and CfN, 
relative to that observed for the ground state analogue (S)-atrolactate (Ki = 0.15 mM(42)), may arise, in part, 
because BzH and CfN are better chelators of the Mg2+ ion, we do not consider Mg2+ chelation to be a feature 
that is independent of TS mimicry. Enhanced interaction with the divalent metal ion is an expected feature of 
the aci-carboxylate intermediate, which bears an additional negative charge relative to (R)- or (S)-mandelate, or 
(S)-atrolactate. If the high affinity of BzH was primarily a result of Mg2+ chelation properties of the hydroxamate 
functional group, one would expect MR to bind acetohydroxamate (Ki = 27 mM) with an affinity greater than 
what is observed(46) because the stability constants for complexes of BzH and acetohydroxamate with Mg2+ are 
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similar.(35) Consequently, other interactions with the enzyme beyond chelation effects (e.g., hydrophobic and 
polar interactions(46)) must also contribute to the high binding affinity of BzH. 

 
Figure 6 

 
Figure 6. Structural overlay of the Mg2+-binding residues in the MR–BzH complex (green), the MR–CfN complex 
(orange), and the MR–(S)-atrolactate complex (PDB entry 1MDR, gray). The positions of all atoms coordinating 
the Mg2+ are nearly identical in all three structures. The Mg2+ ion is bound closer to CfN and BzH than it is to (S)-
atrolactate, consistent with the enhanced Mg2+ binding affinity expected for these analogues.(35, 48) 

Substrate Motion during Catalysis 
Analysis of site-directed mutagenesis studies(19) and competitive inhibition of MR by benzilate(46) led 

us to propose that the phenyl ring of mandelate traverses the hydrophobic cavity as the enzyme interconverts 
(R)- and (S)-mandelate. However, the magnitude of the motion remains unknown. Two scenarios have been 
envisioned for this phenyl motion (Figure 7A).(19) In one scenario, the β-carbon (C1 of the phenyl ring) remains 
stationary throughout the reaction, maintaining a plane with the carboxylate and hydroxyl groups. In this 
scenario, the α-carbon moves by ∼1.0 Å as it undergoes Walden inversion and the paracarbon of the phenyl ring 
moves by ∼1.8 Å. Alternatively, in the second scenario, the α-carbon remains fixed throughout catalysis, 
resulting in a greater compensatory movement of the phenyl ring (∼2.8 Å at the para carbon) as it pivots about 
the α-carbon. The crystal structures of MR with BzH and CfN offer some insight into distinguishing between 
these two scenarios and suggest that the α-carbon moves and the position of the β-carbon remains roughly 
fixed. Structural overlays of MR with the bound intermediate analogues compared with bound (S)-atrolactate 
(Figure 7B) reveal that (i) the α-carbon moves 0.7–0.8 Å from the position it occupies in (S)-atrolactate to the 
position it occupies in the planar intermediate analogues, (ii) the β-carbon remains fixed in a nearly identical 
position, and (iii) the para carbon of the aromatic ring moves between 0.8 and 1.2 Å. Consequently, the 
observed movement of the para carbon suggests that the total distance traversed through the hydrophobic 
cavity by the para carbon of the phenyl ring upon interconversion of (S)- and (R)-mandelate is on the order of 
1.6–2.4 Å, reduced slightly from the value of 2.8 Å (Figure 7A) by the compensating movement of the α-carbon 
during catalysis. Of course, a smaller range of substrate motion in the hydrophobic pocket requires fewer 
rearrangements of the hydrophobic cavity during catalysis. 

 
Figure 7 
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Figure 7. Motion of the phenyl group during catalysis. (A) Schematic diagram depicting two scenarios that 
illustrate the magnitude of motion that the phenyl ring of mandelate may undergo during catalysis. 
Superimposed structures of (R)- and (S)-mandelate are shown bound at the active site of MR. If the position of 
the α-carbon remains fixed as the substrate undergoes a Walden inversion (gray structures), then 
the para carbon atom of the phenyl ring may traverse ∼2.8 Å during catalysis. However, if the α-carbon atom 
moves (∼1.0 Å) so that the hydroxyl, carboxylate, and β-carbon remain bound in the same plane as the 
substrate undergoes a Walden inversion (black structures), the para carbon atom of the phenyl ring may 
traverse ∼1.8 Å during catalysis. (B) Stereoview of the ligands from superpositioned structures of MR complexed 
with (S)-atrolactate (PDB entry 1MDR, gray), BzH (green), and CfN (orange). From these structures, 
the para carbon of the phenyl group moves 0.8–1.2 Å, the α-carbon moves 0.7–0.8 Å, and the β-carbon remains 
fixed. 
 

MR, like all members of the enolase superfamily MR subgroup, orients the substrate such that it 
coordinates the essential Mg2+ using one carboxylate oxygen and the α-OH group.(49)In all enolase superfamily 
enzymes, the α-carbon undergoes a transition from sp3 to sp2hybridization as the reaction progresses from the 
substrate to the enolate intermediate, and the resulting structural rearrangements in the substrate have, in 
some instances, been proposed to play a direct role in the catalytic mechanism. For example, l-rhamnonate 
dehydratase, a member of the MR subgroup, has a single general acid/base residue in the active site. The 
transition from sp3 to sp2 hybridization of the α-carbon in the enolate intermediate is proposed to facilitate 
movement of the β-carbon, permitting His 329 to function both as the general base to deprotonate the α-
carbon and as the general acid to facilitate departure of the β-OH group in the syn dehydration reaction.(50) The 
structures of MR with bound intermediate analogues suggest that, for members of the MR subgroup, which 
orient the substrate to coordinate Mg2+ with the α-OH group, the β-carbon is not likely to undergo significant 
movement as the reaction proceeds from the ground state to the intermediate state. Rather, the general 
acid/base catalyst itself may move closer to the intermediate. Just such a movement is observed for Lys 166 in 
MR when the structure of MR with bound (S)-atrolactate is compared with the structures of MR with bound 
intermediate analogues (Figure 5A), bearing in mind the caveat outlined above concerning the steric effect of 
the α-CH3 group of (S)-atrolactate. Structures of l-talarate/galactarate dehydratase, another member of the 
enolase superfamily MR subgroup, complexed both with a hydroxamate intermediate analogue and with the 
substrate also reveal greater movement of the α-carbon than the β-carbon.(31) However, it is important to note 
that the introduction of a mutation into the general base, K197A, makes it difficult to directly compare the 
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relative movement of these atoms in the structures because the entire ligand shifts in the direction of the void 
created by the K197A mutation in the l-talarate/galactarate dehydratase structure. 

Conclusions 
The crystal structures of MR with the bound intermediate analogues BzH and CfN reveal several 

structural features that had not been evident in the previously reported structures of MR with bound ground 
state analogues.(40-44) These are the first structures of MR bearing a ligand in which the general acid/base 
catalysts, Lys 166 and His 297, are located equidistant from the α-carbon of the ligand. The distance between 
the chelating oxygen atoms of the intermediate analogues and the Mg2+ becomes slightly shorter, relative to the 
corresponding distances in the ground state structure, suggesting that both BzH and CfN form a tighter complex 
with the catalytic Mg2+ as would also be expected for the aci-carboxylate intermediate. Tyr 54 moves closer to 
the phenyl ring of the bound intermediate analogues, and there is a concomitant constriction of the 
hydrophobic cavity within the active site. Finally, the para carbon of the phenyl ring of the substrate pivots 
about the β-carbon by 0.8–1.2 Å between the ground state and intermediate state, consistent with the proposal 
that the phenyl ring moves during MR catalysis while the polar groups remain relatively fixed. The overall 
protein architecture of the active site of MR with either BzH or CfN bound is very similar to that of MR with (S)-
atrolactate bound, suggesting that the alterations in enzyme structure contributing to discrimination between 
the altered substrate in the TS and the ground state by this proficient enzyme are extremely subtle. 
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CD circular dichroism 
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HEPES 4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid 
MR mandelate racemase 
ORF open reading frame 
rmsd root-mean-square deviation 
TS transition state 
VDW van der Waals. 
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