2,664 research outputs found
Dynamical Measurements of the Young Upper Scorpius Triple NTTS 155808-2219
The young, low-mass, triple system NTTS 155808-2219 (ScoPMS 20) was
previously identified as a ~17-day period single-lined spectroscopic binary
with a tertiary component at 0.21 arcseconds. Using high-resolution infrared
spectra, acquired with NIRSPEC on Keck II, both with and without adaptive
optics, we measured radial velocities of all three components. Reanalysis of
the single-lined visible light observations, made from 1987 to 1993, also
yielded radial velocity detections of the three stars. Combining visible light
and infrared data to compute the orbital solution produces orbital parameters
consistent with the single-lined solution and a mass ratio of q = 0.78 +/- 0.01
for the SB. We discuss the consistency between our results and previously
published data on this system, our radial-velocity analysis with both observed
and synthetic templates, and the possibility that this system is eclipsing,
providing a potential method for the determination of the stars' absolute
masses. Over the ~20 year baseline of our observations, we have measured the
acceleration of the SB's center-of-mass in its orbit with the tertiary.
Long-term, adaptive optics imaging of the tertiary will eventually yield
dynamical data useful for component mass estimates.Comment: 6 Tables, 8 Figures, updated to match published tex
The Symplectic Penrose Kite
The purpose of this article is to view the Penrose kite from the perspective
of symplectic geometry.Comment: 24 pages, 7 figures, minor changes in last version, to appear in
Comm. Math. Phys
Superdiffusion in Decoupled Continuous Time Random Walks
Continuous time random walk models with decoupled waiting time density are
studied. When the spatial one jump probability density belongs to the Levy
distribution type and the total time transition is exponential a generalized
superdiffusive regime is established. This is verified by showing that the
square width of the probability distribution (appropriately defined)grows as
with when . An important connection
of our results and those of Tsallis' nonextensive statistics is shown. The
normalized q-expectation value of calculated with the corresponding
probability distribution behaves exactly as in the asymptotic
limit.Comment: 9 pages (.tex file), 1 Postscript figures, uses revtex.st
Notas sobre la concepción de Maxwell acerca de la fisica experimental
El Laboratorio Cavendish fue inaugurado en 1874 y James Clerk Maxwell fue su primer director.
En ese momento Maxwell ocupaba el cargo de Profesor de Física Experimental en la cátedra
Cavendish de la Universidad de Cambridge. La creación de este laboratorio tuvo la intención de
fortalecer la física experimental en el Reino Unido. Se asocia su creación con la "necesidad de
entrenamiento práctico de científicos e ingenieros" tras el éxito de la Gran Exhibición Industrial
de 1851, que dejó claramente expuestos los requerimientos de una sociedad industrial. Hasta ese
momento, la física en Inglaterra significaba física teórica y se la pensaba en el ámbito de las
matemáticas.
Hubo mucha especulación sobre la elección del Profesor de Física Experimental. Tanto
William Thomson (de Glasgow) como John Rayleigh (de Essex) fueron candidatos con grandes
posibilidades, pero ambos rechazaron la oferta Cuando se anunció la designación de Maxwell,
hubo cierto asombro (y malestar) en la comunidad científica londinense. El nuevo profesor
Maxwell era, por aquel entonces, relativamente desconocido. Su nombramiento como profesor
fue anunciado el 8 de marzo de 1871, y más allá de las críticas iniciales, su clase inaugural fue
seguida por una gran cantidad de estudiantes e investigadores de Cambridge. Sus libros más
influyentes, Teoría Cinética ( 1871) y el Tratado de Electricidad y Magnetismo ( 1873), -no habían
sido todavía publicados.
En esta clase, Maxwell dejó claramente expuesta la impronta que él darla unos años
después al Laboratorio Cavendish, cuando fuera su Director. Una de sus primeras acciones al
asumir como Director del laboratorio, fue la construcción de un conjunto de equipos de física
experimental, muchos de los cuales eran producto de sus propios desarrollos y concepciones.
Entre ellos se destaca un modelo mecánico que tenía por objetivo representar la interacción de
dos circuitos eléctricos. El estudio de este modelo es el propósito primordial del presente trabajo.
Para una mejor comprensión de los objetivos perseguidos por Maxwell con este tipo de
desarrollos, haremos, por un lado una breve descripción de las ideas que Maxwell tenía sobre la
física experimental y por el otro, un análisis del modelo desde la concepción mecanicista que él
tenía del electromagnetismo
Double connective tissue graft to treat deep coronal-radicular abrasion: A 19-year follow-up case report
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/170298/1/cap10176.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/170298/2/cap10176_am.pd
Data-adaptive harmonic spectra and multilayer Stuart-Landau models
Harmonic decompositions of multivariate time series are considered for which
we adopt an integral operator approach with periodic semigroup kernels.
Spectral decomposition theorems are derived that cover the important cases of
two-time statistics drawn from a mixing invariant measure.
The corresponding eigenvalues can be grouped per Fourier frequency, and are
actually given, at each frequency, as the singular values of a cross-spectral
matrix depending on the data. These eigenvalues obey furthermore a variational
principle that allows us to define naturally a multidimensional power spectrum.
The eigenmodes, as far as they are concerned, exhibit a data-adaptive character
manifested in their phase which allows us in turn to define a multidimensional
phase spectrum.
The resulting data-adaptive harmonic (DAH) modes allow for reducing the
data-driven modeling effort to elemental models stacked per frequency, only
coupled at different frequencies by the same noise realization. In particular,
the DAH decomposition extracts time-dependent coefficients stacked by Fourier
frequency which can be efficiently modeled---provided the decay of temporal
correlations is sufficiently well-resolved---within a class of multilayer
stochastic models (MSMs) tailored here on stochastic Stuart-Landau oscillators.
Applications to the Lorenz 96 model and to a stochastic heat equation driven
by a space-time white noise, are considered. In both cases, the DAH
decomposition allows for an extraction of spatio-temporal modes revealing key
features of the dynamics in the embedded phase space. The multilayer
Stuart-Landau models (MSLMs) are shown to successfully model the typical
patterns of the corresponding time-evolving fields, as well as their statistics
of occurrence.Comment: 26 pages, double columns; 15 figure
Jensen-Shannon divergence as a measure of distinguishability between mixed quantum states
We discuss an alternative to relative entropy as a measure of distance
between mixed quantum states. The proposed quantity is an extension to the
realm of quantum theory of the Jensen-Shannon divergence (JSD) between
probability distributions. The JSD has several interesting properties. It
arises in information theory and, unlike the Kullback-Leibler divergence, it is
symmetric, always well defined and bounded. We show that the quantum JSD (QJSD)
shares with the relative entropy most of the physically relevant properties, in
particular those required for a "good" quantum distinguishability measure. We
relate it to other known quantum distances and we suggest possible applications
in the field of the quantum information theory.Comment: 14 pages, corrected equation 1
Denoising Diffusion Models on Model-Based Latent Space
With the recent advancements in the field of diffusion generative models, it has been shown that defining the generative process in the latent space of a powerful pretrained autoencoder can offer substantial advantages. This approach, by abstracting away imperceptible image details and introducing substantial spatial compression, renders the learning of the generative process more manageable while significantly reducing computational and memory demands. In this work, we propose to replace autoencoder coding with a model-based coding scheme based on traditional lossy image compression techniques; this choice not only further diminishes computational expenses but also allows us to probe the boundaries of latent-space image generation. Our objectives culminate in the proposal of a valuable approximation for training continuous diffusion models within a discrete space, accompanied by enhancements to the generative model for categorical values. Beyond the good results obtained for the problem at hand, we believe that the proposed work holds promise for enhancing the adaptability of generative diffusion models across diverse data types beyond the realm of imagery
Adjoint bi-continuous semigroups and semigroups on the space of measures
For a given bi-continuous semigroup T on a Banach space X we define its
adjoint on an appropriate closed subspace X^o of the norm dual X'. Under some
abstract conditions this adjoint semigroup is again bi-continuous with respect
to the weak topology (X^o,X). An application is the following: For K a Polish
space we consider operator semigroups on the space C(K) of bounded, continuous
functions (endowed with the compact-open topology) and on the space M(K) of
bounded Baire measures (endowed with the weak*-topology). We show that
bi-continuous semigroups on M(K) are precisely those that are adjoints of a
bi-continuous semigroups on C(K). We also prove that the class of bi-continuous
semigroups on C(K) with respect to the compact-open topology coincides with the
class of equicontinuous semigroups with respect to the strict topology. In
general, if K is not Polish space this is not the case
- …