114 research outputs found

    Unraveling the complexity of tyrosine kinase inhibitor-resistant populations by ultra-deep sequencing of the BCR-ABL kinase domain

    Get PDF
    In chronic myeloid leukemia and Philadelphia chromosome-positive acute lymphoblastic leukemia, tyrosine kinase inhibitor (TKI) therapy may select for drug-resistant BCR-ABL mutants. We used an ultra-deep sequencing (UDS) approach to resolve qualitatively and quantitatively the complexity of mutated populations surviving TKIs and to investigate their clonal structure and evolution over time in relation to therapeutic intervention. To this purpose, we performed a longitudinal analysis of 106 samples from 33 patients who had received sequential treatment with multiple TKIs and had experienced sequential relapses accompanied by selection of 1 or more TKI-resistant mutations. We found that conventional Sanger sequencing had misclassified or underestimated BCR-ABL mutation status in 55% of the samples, where mutations with 1% to 15% abundance were detected. A complex clonal texture was uncovered by clonal analysis of samples harboring multiple mutations and up to 13 different mutated populations were identified. The landscape of these mutated populations was found to be highly dynamic. The high degree of complexity uncovered by UDS indicates that conventional Sanger sequencing might be an inadequate tool to assess BCR-ABL kinase domain mutation status, which currently represents an important component of the therapeutic decision algorithms. Further evaluation of the clinical usefulness of UDS-based approaches is warranted

    Лазерная бронхоскопическая хирургия трахеи и бронхов

    Get PDF
    Abilities of bronchiscopic laser surgery were investigated in 170 patients with various pathological formations of trachea and bronchi. The saser endoscopic surgery was characterized as an effective method for radical and palliative treatments of benign and malignant tumors, scar stenosis of trahcea and bronchi, broncholytias, and some others. The increase of the laser intervention efficiency was assisted by the simultaneous usage of some additional methods such as electroexcision of tumors, endoprosthesis, and many others.Возможности бронхоскопической лазерной хирургии были изучены у 170 больных с различными патологическими образованиями трахеи и бронхов. Лазерная эндохирургия зарекомендовала себя эффективным методом радикального и паллиативного лечения доброкачественных и злокачественных опухолей, рубцовых стенозов трахеи и бронхов, бронхолитиаза и некоторых других заболеваний. Повышению эффективности лазерных оперативных вмешательств способствовало одновременное применение некоторых дополнительных методов — электроэксцизии опухолей, эндопротезирования и других

    Association Between TAS2R38 Gene Polymorphisms and Colorectal Cancer Risk: A Case-Control Study in Two Independent Populations of Caucasian Origin

    Get PDF
    Molecular sensing in the lingual mucosa and in the gastro-intestinal tract play a role in the detection of ingested harmful drugs and toxins. Therefore, genetic polymorphisms affecting the capability of initiating these responses may be critical for the subsequent efficiency of avoiding and/or eliminating possible threats to the organism. By using a tagging approach in the region of Taste Receptor 2R38 (TAS2R38) gene, we investigated all the common genetic variation of this gene region in relation to colorectal cancer risk with a case-control study in a German population (709 controls and 602 cases) and in a Czech population (623 controls and 601 cases). We found that there were no significant associations between individual SNPs of the TAS2R38 gene and colorectal cancer in the Czech or in the German population, nor in the joint analysis. However, when we analyzed the diplotypes and the phenotypes we found that the non-taster group had an increased risk of colorectal cancer in comparison to the taster group. This association was borderline significant in the Czech population, (OR = 1.28, 95% CI 0.99–1.67; Pvalue = 0.058) and statistically significant in the German population (OR = 1.36, 95% CI 1.06–1.75; Pvalue = 0.016) and in the joint analysis (OR = 1.34, 95% CI 1.12–1.61; Pvalue = 0.001). In conclusion, we found a suggestive association between the human bitter tasting phenotype and the risk of CRC in two different populations of Caucasian origin

    Rifapentine access in Europe: growing concerns over key tuberculosis treatment component

    Get PDF
    [No abstract available]Support statement: C. Lange is supported by the German Center of Infection Research (DZIF). All other authors have no funding to declare for this study. Funding information for this article has been deposited with the Crossref Funder Registry

    Is High Resolution Melting Analysis (HRMA) Accurate for Detection of Human Disease-Associated Mutations? A Meta Analysis

    Get PDF
    BACKGROUND: High Resolution Melting Analysis (HRMA) is becoming the preferred method for mutation detection. However, its accuracy in the individual clinical diagnostic setting is variable. To assess the diagnostic accuracy of HRMA for human mutations in comparison to DNA sequencing in different routine clinical settings, we have conducted a meta-analysis of published reports. METHODOLOGY/PRINCIPAL FINDINGS: Out of 195 publications obtained from the initial search criteria, thirty-four studies assessing the accuracy of HRMA were included in the meta-analysis. We found that HRMA was a highly sensitive test for detecting disease-associated mutations in humans. Overall, the summary sensitivity was 97.5% (95% confidence interval (CI): 96.8-98.5; I(2) = 27.0%). Subgroup analysis showed even higher sensitivity for non-HR-1 instruments (sensitivity 98.7% (95%CI: 97.7-99.3; I(2) = 0.0%)) and an eligible sample size subgroup (sensitivity 99.3% (95%CI: 98.1-99.8; I(2) = 0.0%)). HRMA specificity showed considerable heterogeneity between studies. Sensitivity of the techniques was influenced by sample size and instrument type but by not sample source or dye type. CONCLUSIONS/SIGNIFICANCE: These findings show that HRMA is a highly sensitive, simple and low-cost test to detect human disease-associated mutations, especially for samples with mutations of low incidence. The burden on DNA sequencing could be significantly reduced by the implementation of HRMA, but it should be recognized that its sensitivity varies according to the number of samples with/without mutations, and positive results require DNA sequencing for confirmation

    Deletion of Cryptococcus neoformans AIF Ortholog Promotes Chromosome Aneuploidy and Fluconazole-Resistance in a Metacaspase-Independent Manner

    Get PDF
    Apoptosis is a form of programmed cell death critical for development and homeostasis in multicellular organisms. Apoptosis-like cell death (ALCD) has been described in several fungi, including the opportunistic human pathogen Cryptococcus neoformans. In addition, capsular polysaccharides of C. neoformans are known to induce apoptosis in host immune cells, thereby contributing to its virulence. Our goals were to characterize the apoptotic signaling cascade in C. neoformans as well as its unique features compared to the host machinery to exploit the endogenous fungal apoptotic pathways as a novel antifungal strategy in the future. The dissection of apoptotic pathways revealed that apoptosis-inducing factor (Aif1) and metacaspases (Mca1 and Mca2) are independently required for ALCD in C. neoformans. We show that the apoptotic pathways are required for cell fusion and sporulation during mating, indicating that apoptosis may occur during sexual development. Previous studies showed that antifungal drugs induce ALCD in fungi and that C. neoformans adapts to high concentrations of the antifungal fluconazole (FLC) by acquisition of aneuploidy, especially duplication of chromosome 1 (Chr1). Disruption of aif1, but not the metacaspases, stimulates the emergence of aneuploid subpopulations with Chr1 disomy that are resistant to fluconazole (FLCR) in vitro and in vivo. FLCR isolates in the aif1 background are stable in the absence of the drug, while those in the wild-type background readily revert to FLC sensitivity. We propose that apoptosis orchestrated by Aif1 might eliminate aneuploid cells from the population and defects in this pathway contribute to the selection of aneuploid FLCR subpopulations during treatment. Aneuploid clinical isolates with disomies for chromosomes other than Chr1 exhibit reduced AIF1 expression, suggesting that inactivation of Aif1 might be a novel aneuploidy-tolerating mechanism in fungi that facilitates the selection of antifungal drug resistance
    corecore