7,392 research outputs found

    Strong and weak thermalization of infinite non-integrable quantum systems

    Full text link
    When a non-integrable system evolves out of equilibrium for a long time, local observables are expected to attain stationary expectation values, independent of the details of the initial state. However, intriguing experimental results with ultracold gases have shown no thermalization in non-integrable settings, triggering an intense theoretical effort to decide the question. Here we show that the phenomenology of thermalization in a quantum system is much richer than its classical counterpart. Using a new numerical technique, we identify two distinct thermalization regimes, strong and weak, occurring for different initial states. Strong thermalization, intrinsically quantum, happens when instantaneous local expectation values converge to the thermal ones. Weak thermalization, well-known in classical systems, happens when local expectation values converge to the thermal ones only after time averaging. Remarkably, we find a third group of states showing no thermalization, neither strong nor weak, to the time scales one can reliably simulate.Comment: 12 pages, 21 figures, including additional materia

    Matrix Product States: Symmetries and Two-Body Hamiltonians

    Full text link
    We characterize the conditions under which a translationally invariant matrix product state (MPS) is invariant under local transformations. This allows us to relate the symmetry group of a given state to the symmetry group of a simple tensor. We exploit this result in order to prove and extend a version of the Lieb-Schultz-Mattis theorem, one of the basic results in many-body physics, in the context of MPS. We illustrate the results with an exhaustive search of SU(2)--invariant two-body Hamiltonians which have such MPS as exact ground states or excitations.Comment: PDFLatex, 12 pages and 6 figure

    Resonating valence bond states in the PEPS formalism

    Get PDF
    We study resonating valence bond (RVB) states in the Projected Entangled Pair States (PEPS) formalism. Based on symmetries in the PEPS description, we establish relations between the toric code state, the orthogonal dimer state, and the SU(2) singlet RVB state on the kagome lattice: We prove the equivalence of toric code and dimer state, and devise an interpolation between the dimer state and the RVB state. This interpolation corresponds to a continuous path in Hamiltonian space, proving that the RVB state is the four-fold degenerate ground state of a local Hamiltonian on the (finite) kagome lattice. We investigate this interpolation using numerical PEPS methods, studying the decay of correlation functions, the change of overlap, and the entanglement spectrum, none of which exhibits signs of a phase transition.Comment: 11+9 pages, 28 figures. v2: More numerical results, and a few minor improvements. v3: Accepted version (minor changes relative to v2), Journal-Ref adde

    Fundamental limitations in the purifications of tensor networks

    Get PDF
    We show a fundamental limitation in the description of quantum many-body mixed states with tensor networks in purification form. Namely, we show that there exist mixed states which can be represented as a translationally invariant (TI) matrix product density operator (MPDO) valid for all system sizes, but for which there does not exist a TI purification valid for all system sizes. The proof is based on an undecidable problem and on the uniqueness of canonical forms of matrix product states. The result also holds for classical states.Comment: v1: 11 pages, 1 figure. v2: very minor changes. About to appear in Journal of Mathematical Physic

    Gapless Hamiltonians for the toric code using the PEPS formalism

    Get PDF
    We study Hamiltonians which have Kitaev's toric code as a ground state, and show how to construct a Hamiltonian which shares the ground space of the toric code, but which has gapless excitations with a continuous spectrum in the thermodynamic limit. Our construction is based on the framework of Projected Entangled Pair States (PEPS), and can be applied to a large class of two-dimensional systems to obtain gapless "uncle Hamiltonians".Comment: 8 pages, 2 figure

    Numerical Simulation of Nano Scanning in Intermittent-Contact Mode AFM under Q control

    Full text link
    We investigate nano scanning in tapping mode atomic force microscopy (AFM) under quality (Q) control via numerical simulations performed in SIMULINK. We focus on the simulation of whole scan process rather than the simulation of cantilever dynamics and the force interactions between the probe tip and the surface alone, as in most of the earlier numerical studies. This enables us to quantify the scan performance under Q control for different scan settings. Using the numerical simulations, we first investigate the effect of elastic modulus of sample (relative to the substrate surface) and probe stiffness on the scan results. Our numerical simulations show that scanning in attractive regime using soft cantilevers with high Qeff results in a better image quality. We, then demonstrate the trade-off in setting the effective Q factor (Qeff) of the probe in Q control: low values of Qeff cause an increase in tapping forces while higher ones limit the maximum achievable scan speed due to the slow response of the cantilever to the rapid changes in surface profile. Finally, we show that it is possible to achieve higher scan speeds without causing an increase in the tapping forces using adaptive Q control (AQC), in which the Q factor of the probe is changed instantaneously depending on the magnitude of the error signal in oscillation amplitude. The scan performance of AQC is quantitatively compared to that of standard Q control using iso-error curves obtained from numerical simulations first and then the results are validated through scan experiments performed using a physical set-up

    Mejora de las propiedades mecánicas y compatibilidad de mezclas de PHBV/PLA con plastificantes comerciales de origen bio

    Get PDF
    Actas del Congreso publicadas por ed. Compobell. ISBN 978-84-942655-8-7Mezclas de poli (3-hidroxibutirato-co-3-hidroxivalerato) (PHBV) y ácido poliláctico (PLA) se prepararon con un plastificante comercial funcionalizado de origen bio. La morfología obtenida, así como las propiedades mecánicas y dinamo-mecánicas de probetas inyectadas se ha evaluado observándose una mejora en la compatibilidad del PHBV y el PLA y un aumento en la deformación a rotura en tracción.A number of samples of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and polylactic acid (PLA) were treated with a commercial funcionalised bio plasticiser. The relevant assessment was made on the morphology and both the mechanic and dynamo-mechanic properties obtained in the injected test tubes. An improvement in terms of compatibility between PHBV and PLA has been observed, as well as an increase in strain at break in tensile testing.Ministerio de Economía y Competitividad (proyecto MAT2012-38947-C02-01) y Pla de Promoció de la Investigació de la Universitat Jaume I (PREDOC / 2012/32

    Adjoint fermion zero-modes for SU(N) calorons

    Get PDF
    We derive analytic formulas for the zero-modes of the Dirac equation in the adjoint representation in the background field of Q=1 SU(N) calorons. Solutions with various boundary conditions are obtained, including the physically most relevant cases of periodic and antiperiodic ones. The latter are essential ingredients in a semiclassical treatment of finite temperature supersymmetric Yang-Mills theory. A detailed discussion of adjoint zero-modes in several other contexts is also presented.Comment: 40 latex pages and 5 eps figure

    Decoherence and relaxation in the interacting quantum dot system

    Full text link
    In this paper we study the low temperature kinetics of the electrons in the system composed of a quantum dot connected to two leads by solving the equation of motion. The decoherence and the relaxation of the system caused by the gate voltage noise and electron-phonon scattering are investigated. In order to take account of the strong correlation of the electrons in this system, the quasi-exact wave functions are calculated using an improved matrix product states algorithm. This algorithm enables us to calculate the wave functions of the ground state and the low lying excited states with satisfied accuracy and thus enables us to study the kinetics of the system more effectively. It is found that although both of these two mechanisms are proportional to the electron number operator in the dot, the kinetics are quite different. The noise induced decoherence is much more effective than the energy relaxation, while the energy relaxation and decoherence time are of the same order for the electron-phonon scattering. Moreover, the noise induced decoherence increases with the lowering of the dot level, but the relaxation and decoherence due to the electron-phonon scattering decrease.Comment: Minor revision. Add journal referenc

    Quantum kinetic Ising models

    Full text link
    We introduce a quantum generalization of classical kinetic Ising models, described by a certain class of quantum many body master equations. Similarly to kinetic Ising models with detailed balance that are equivalent to certain Hamiltonian systems, our models reduce to a set of Hamiltonian systems determining the dynamics of the elements of the many body density matrix. The ground states of these Hamiltonians are well described by matrix product, or pair entangled projected states. We discuss critical properties of such Hamiltonians, as well as entanglement properties of their low energy states.Comment: 20 pages, 4 figures, minor improvements, accepted in New Journal of Physic
    • …
    corecore