1,199 research outputs found
Spatial Structure and Coherent Motion in Dense Planetary Rings Induced by Self-Gravitational Instability
We investigate the formation of spatial structure in dense, self-gravitating
particle systems such as Saturn's B-ring through local -body simulations to
clarify the intrinsic physics based on individual particle motion. In such a
system, Salo (1995) showed that the formation of spatial structure such as
wake-like structure and particle grouping (clump) arises spontaneously due to
gravitational instability and the radial velocity dispersion increases as the
formation of the wake structure. However, intrinsic physics of the phenomena
has not been clarified. We performed local -body simulations including
mutual gravitational forces between ring particles as well as direct
(inelastic) collisions with identical (up to ) particles. In the
wake structure particles no longer move randomly but coherently. We found that
particle motion was similar to Keplerian motion even in the wake structure and
that the coherent motion was produced since the particles in a clump had
similar eccentricity and longitude of perihelion. This coherent motion causes
the increase and oscillation in the radial velocity dispersion. The mean
velocity dispersion is rather larger in a more dissipative case with a smaller
restitution coefficient and/or a larger surface density since the coherence is
stronger in the more dissipative case. Our simulations showed that the
wavelength of the wake structure was approximately given by the longest
wavelength \hs{\lambda}{cr} = 4\pi^2 G\Sigma/\kappa^2 in the linear theory of
axisymmetric gravitational instability in a thin disk, where , , and
are the gravitational constant, surface density, and a epicyclic
frequency.Comment: Accepted by Earth, Planets, and Space. 39 pages, 20 figures.
PostScript files also available from
http://www.geo.titech.ac.jp/nakazawalab/hdaisaka/works
The isolated interacting galaxy pair NGC 5426/27 (Arp 271)
We present H alpha observations of the isolated interacting galaxy pair NGC
5426/27 using the scanning Fabry-Perot interferometer PUMA. The velocity field,
various kinematical parameters and rotation curve for each galaxy were derived.
The FWHM map and the residual velocities map were also computed to study the
role of non-circular motions of the gas. Most of these motions can be
associated with the presence of spiral arms and structure such as central bars.
We found a small bar-like structure in NGC 5426, a distorted velocity field for
NGC 5427 and a bridge-like feature between both galaxies which seems to be
associated with NGC 5426. Using the observed rotation curves, a range of
possible masses was computed for each galaxy. These were compared with the
orbital mass of the pair derived from the relative motion of the participants.
The rotation curve of each galaxy was also used to fit different mass
distribution models considering the most common theoretical dark halo models.
An analysis of the interaction process is presented and a possible 3D scenario
for this encounter is also suggested.Comment: 27 pages, 15 figures, to be published in Astronomy & Astrophysic
Comparison of bar strengths in active and non-active galaxies
Bar strengths are compared between active and non-active galaxies for a
sample of 43 barred galaxies. The relative bar torques are determined using a
new technique (Buta and Block 2001), where maximum tangential forces are
calculated in the bar region, normalized to the axisymmetric radial force
field. We use JHK images of the 2 Micron All Sky Survey. We show a first clear
empirical indication that the ellipticies of bars are correlated with the
non-axisymmetric forces in the bar regions. We found that nuclear activity
appears preferentially in those early type galaxies in which the maximum bar
torques are weak and appear at quite large distances from the galactic center.
Most suprisingly the galaxies with the strongest bars are non-active. Our
results imply that the bulges may be important for the onset of nuclear
activity, but that the correlation between the nuclear activity and the early
type galaxies is not straightforward.Comment: MNRAS macro in tex format, 9 pages, 10 figure
The Kinematically Measured Pattern Speeds of NGC 2523 and NGC 4245
We have applied the Tremaine-Weinberg continuity equation method to derive
the bar pattern speed in the SB(r)b galaxy NGC 2523 and the SB(r)0/a galaxy NGC
4245 using the Calcium Triplet absorption lines. These galaxies were selected
because they have strong inner rings which can be used as independent tracers
of the pattern speed. The pattern speed of NGC 2523 is 26.4 6.1 km
s kpc, assuming an inclination of 49.7 and a distance
of 51.0 Mpc. The pattern speed of NGC 4245 is 75.5 31.3 km s
kpc, assuming an inclination of 35.4 and a distance of 12.6
Mpc. The ratio of the corotation radius to the bar radius of NGC 2523 and NGC
4245 is 1.4 0.3 and 1.1 0.5, respectively. These values place the
bright inner rings near and slightly inside the corotation radius, as predicted
by barred galaxy theory. Within the uncertainties, both galaxies are found to
have fast bars that likely indicate dark halos of low central concentration.
The photometric properties, bar strengths, and disk stabilities of both
galaxies are also discussed.Comment: Accepted for publication in The Astronomical Journal, 11 figures, 2
table
A cortical potential reflecting cardiac function
Emotional trauma and psychological stress can precipitate cardiac arrhythmia and sudden death through arrhythmogenic effects of efferent sympathetic drive. Patients with preexisting heart disease are particularly at risk. Moreover, generation of proarrhythmic activity patterns within cerebral autonomic centers may be amplified by afferent feedback from a dysfunctional myocardium. An electrocortical potential reflecting afferent cardiac information has been described, reflecting individual differences in interoceptive sensitivity (awareness of one's own heartbeats). To inform our understanding of mechanisms underlying arrhythmogenesis, we extended this approach, identifying electrocortical potentials corresponding to the cortical expression of afferent information about the integrity of myocardial function during stress. We measured changes in cardiac response simultaneously with electroencephalography in patients with established ventricular dysfunction. Experimentally induced mental stress enhanced cardiovascular indices of sympathetic activity (systolic blood pressure, heart rate, ventricular ejection fraction, and skin conductance) across all patients. However, the functional response of the myocardium varied; some patients increased, whereas others decreased, cardiac output during stress. Across patients, heartbeat-evoked potential amplitude at left temporal and lateral frontal electrode locations correlated with stress-induced changes in cardiac output, consistent with an afferent cortical representation of myocardial function during stress. Moreover, the amplitude of the heartbeat-evoked potential in the left temporal region reflected the proarrhythmic status of the heart (inhomogeneity of left ventricular repolarization). These observations delineate a cortical representation of cardiac function predictive of proarrhythmic abnormalities in cardiac repolarization. Our findings highlight the dynamic interaction of heart and brain in stress-induced cardiovascular morbidity
Thermoacoustic tomography arising in brain imaging
We study the mathematical model of thermoacoustic and photoacoustic
tomography when the sound speed has a jump across a smooth surface. This models
the change of the sound speed in the skull when trying to image the human
brain. We derive an explicit inversion formula in the form of a convergent
Neumann series under the assumptions that all singularities from the support of
the source reach the boundary
Limiting Carleman weights and anisotropic inverse problems
In this article we consider the anisotropic Calderon problem and related
inverse problems. The approach is based on limiting Carleman weights,
introduced in Kenig-Sjoestrand-Uhlmann (Ann. of Math. 2007) in the Euclidean
case. We characterize those Riemannian manifolds which admit limiting Carleman
weights, and give a complex geometrical optics construction for a class of such
manifolds. This is used to prove uniqueness results for anisotropic inverse
problems, via the attenuated geodesic X-ray transform. Earlier results in
dimension were restricted to real-analytic metrics.Comment: 58 page
X-wave mediated instability of plane waves in Kerr media
Plane waves in Kerr media spontaneously generate paraxial X-waves (i.e.
non-dispersive and non-diffractive pulsed beams) that get amplified along
propagation. This effect can be considered a form of conical emission (i.e.
spatio-temporal modulational instability), and can be used as a key for the
interpretation of the out of axis energy emission in the splitting process of
focused pulses in normally dispersive materials. A new class of spatio-temporal
localized wave patterns is identified. X-waves instability, and nonlinear
X-waves, are also expected in periodical Bose condensed gases.Comment: 4 pages, 6 figure
Precursor flares in OJ 287
We have studied three most recent precursor flares in the light curve of the
blazar OJ 287 while invoking the presence of a precessing binary black hole in
the system to explain the nature of these flares. Precursor flare timings from
the historical light curves are compared with theoretical predictions from our
model that incorporate effects of an accretion disk and post-Newtonian
description for the binary black hole orbit. We find that the precursor flares
coincide with the secondary black hole descending towards the accretion disk of
the primary black hole from the observed side, with a mean z-component of
approximately z_c = 4000 AU. We use this model of precursor flares to predict
that precursor flare of similar nature should happen around 2020.96 before the
next major outburst in 2022.Comment: to appear in the Astrophysical Journa
Histological characteristics of early-stage oral tongue cancer in young versus older patients : A multicenter matched-pair analysis
Little is known about the histopathological characteristics that may differentiate early oral tongue cancer (OTSCC) between young and older patients. From a total of 311 cases diagnosed with clinically early-stage OTSCC at 6 institutions, only 42 patients were young patients were aged 60 years old were matched for center of management, clinical stage and gender. We compared epithelial and stromal histopathologic parameters between the two groups. Most of the parameters were similar between the two groups, although the young patients appeared to have marginally higher intensity of tumor budding, histologic risk score, infiltrative pattern of invasion and tumor-stroma ratio. However, none of the factors showed significant difference when comparing the two groups. The histological parameters reflect mechanisms of invasive growth and tissue response to invasive growth, but not the etiological difference in OTSCC between young and older patients. Further investigations are necessary to compare the genetic background of early OTSCC in the two groups.Peer reviewe
- âŠ