564 research outputs found

    Genomic risk prediction of coronary artery disease in women with breast cancer: a prospective cohort study.

    Get PDF
    Funder: Wellcome TrustBackgroundAdvancements in cancer therapeutics have resulted in increases in cancer-related survival; however, there is a growing clinical dilemma. The current balancing of survival benefits and future cardiotoxic harms of oncotherapies has resulted in an increased burden of cardiovascular disease in breast cancer survivors. Risk stratification may help address this clinical dilemma. This study is the first to assess the association between a coronary artery disease-specific polygenic risk score and incident coronary artery events in female breast cancer survivors.MethodsWe utilized the Studies in Epidemiology and Research in Cancer Heredity prospective cohort involving 12,413 women with breast cancer with genotype information and without a baseline history of cardiovascular disease. Cause-specific hazard ratios for association of the polygenic risk score and incident coronary artery disease (CAD) were obtained using left-truncated Cox regression adjusting for age, genotype array, conventional risk factors such as smoking and body mass index, as well as other sociodemographic, lifestyle, and medical variables.ResultsOver a median follow-up of 10.3 years (IQR: 16.8) years, 750 incident fatal or non-fatal coronary artery events were recorded. A 1 standard deviation higher polygenic risk score was associated with an adjusted hazard ratio of 1.33 (95% CI 1.20, 1.47) for incident CAD.ConclusionsThis study provides evidence that a coronary artery disease-specific polygenic risk score can risk-stratify breast cancer survivors independently of other established cardiovascular risk factors

    Incorporating truncating variants in PALB2, CHEK2, and ATM into the BOADICEA breast cancer risk model.

    Get PDF
    PURPOSE: The proliferation of gene panel testing precipitates the need for a breast cancer (BC) risk model that incorporates the effects of mutations in several genes and family history (FH). We extended the BOADICEA model to incorporate the effects of truncating variants in PALB2, CHEK2, and ATM. METHODS: The BC incidence was modeled via the explicit effects of truncating variants in BRCA1/2, PALB2, CHEK2, and ATM and other unobserved genetic effects using segregation analysis methods. RESULTS: The predicted average BC risk by age 80 for an ATM mutation carrier is 28%, 30% for CHEK2, 50% for PALB2, and 74% for BRCA1 and BRCA2. However, the BC risks are predicted to increase with FH burden. In families with mutations, predicted risks for mutation-negative members depend on both FH and the specific mutation. The reduction in BC risk after negative predictive testing is greatest when a BRCA1 mutation is identified in the family, but for women whose relatives carry a CHEK2 or ATM mutation, the risks decrease slightly. CONCLUSIONS: The model may be a valuable tool for counseling women who have undergone gene panel testing for providing consistent risks and harmonizing their clinical management. A Web application can be used to obtain BC risks in clinical practice (http://ccge.medschl.cam.ac.uk/boadicea/).Genet Med 18 12, 1190-1198.This work was funded by Cancer Research UK Grants C12292/A11174 and C1287/A10118. ACA is a Cancer Research UK Senior Cancer Research Fellow. This work was supported by the Governement of Canada through Genome Canada and the Canadian Institutes of Health Research, and the Ministère de l'enseignement supérieur, de la recherche, de la science et de la technologie du Québec through Génome Québec.This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/gim.2016.3

    Polygenic risk-tailored screening for prostate cancer: A benefit-harm and cost-effectiveness modelling study.

    Get PDF
    BACKGROUND: The United States Preventive Services Task Force supports individualised decision-making for prostate-specific antigen (PSA)-based screening in men aged 55-69. Knowing how the potential benefits and harms of screening vary by an individual's risk of developing prostate cancer could inform decision-making about screening at both an individual and population level. This modelling study examined the benefit-harm tradeoffs and the cost-effectiveness of a risk-tailored screening programme compared to age-based and no screening. METHODS AND FINDINGS: A life-table model, projecting age-specific prostate cancer incidence and mortality, was developed of a hypothetical cohort of 4.48 million men in England aged 55 to 69 years with follow-up to age 90. Risk thresholds were based on age and polygenic profile. We compared no screening, age-based screening (quadrennial PSA testing from 55 to 69), and risk-tailored screening (men aged 55 to 69 years with a 10-year absolute risk greater than a threshold receive quadrennial PSA testing from the age they reach the risk threshold). The analysis was undertaken from the health service perspective, including direct costs borne by the health system for risk assessment, screening, diagnosis, and treatment. We used probabilistic sensitivity analyses to account for parameter uncertainty and discounted future costs and benefits at 3.5% per year. Our analysis should be considered cautiously in light of limitations related to our model's cohort-based structure and the uncertainty of input parameters in mathematical models. Compared to no screening over 35 years follow-up, age-based screening prevented the most deaths from prostate cancer (39,272, 95% uncertainty interval [UI]: 16,792-59,685) at the expense of 94,831 (95% UI: 84,827-105,630) overdiagnosed cancers. Age-based screening was the least cost-effective strategy studied. The greatest number of quality-adjusted life-years (QALYs) was generated by risk-based screening at a 10-year absolute risk threshold of 4%. At this threshold, risk-based screening led to one-third fewer overdiagnosed cancers (64,384, 95% UI: 57,382-72,050) but averted 6.3% fewer (9,695, 95% UI: 2,853-15,851) deaths from prostate cancer by comparison with age-based screening. Relative to no screening, risk-based screening at a 4% 10-year absolute risk threshold was cost-effective in 48.4% and 57.4% of the simulations at willingness-to-pay thresholds of GBP£20,000 (US26,000)and£30,000(26,000) and £30,000 (39,386) per QALY, respectively. The cost-effectiveness of risk-tailored screening improved as the threshold rose. CONCLUSIONS: Based on the results of this modelling study, offering screening to men at higher risk could potentially reduce overdiagnosis and improve the benefit-harm tradeoff and the cost-effectiveness of a prostate cancer screening program. The optimal threshold will depend on societal judgements of the appropriate balance of benefits-harms and cost-effectiveness

    Association between Common Variation in 120 Candidate Genes and Breast Cancer Risk

    Get PDF
    Association studies in candidate genes have been widely used to search for common low penetrance susceptibility alleles, but few definite associations have been established. We have conducted association studies in breast cancer using an empirical single nucleotide polymorphism (SNP) tagging approach to capture common genetic variation in genes that are candidates for breast cancer based on their known function. We genotyped 710 SNPs in 120 candidate genes in up to 4,400 breast cancer cases and 4,400 controls using a staged design. Correction for population stratification was done using the genomic control method, on the basis of data from 280 genomic control SNPs. Evidence for association with each SNP was assessed using a Cochran–Armitage trend test (p-trend) and a two-degrees of freedom χ(2) test for heterogeneity (p-het). The most significant single SNP (p-trend = 8 × 10(−5)) was not significant at a nominal 5% level after adjusting for population stratification and multiple testing. To evaluate the overall evidence for an excess of positive associations over the proportion expected by chance, we applied two global tests: the admixture maximum likelihood (AML) test and the rank truncated product (RTP) test corrected for population stratification. The admixture maximum likelihood experiment-wise test for association was significant for both the heterogeneity test (p = 0.0031) and the trend test (p = 0.017), but no association was observed using the rank truncated product method for either the heterogeneity test or the trend test (p = 0.12 and p = 0.24, respectively). Genes in the cell-cycle control pathway and genes involved in steroid hormone metabolism and signalling were the main contributors to the association. These results suggest that a proportion of SNPs in these candidate genes are associated with breast cancer risk, but that the effects of individual SNPs is likely to be small. Large sample sizes from multicentre collaboration will be needed to identify associated SNPs with certainty

    Breast cancer risk factors and their effects on survival: a Mendelian randomisation study

    Get PDF
    Abstract: Background: Observational studies have investigated the association of risk factors with breast cancer prognosis. However, the results have been conflicting and it has been challenging to establish causality due to potential residual confounding. Using a Mendelian randomisation (MR) approach, we aimed to examine the potential causal association between breast cancer-specific survival and nine established risk factors for breast cancer: alcohol consumption, body mass index, height, physical activity, mammographic density, age at menarche or menopause, smoking, and type 2 diabetes mellitus (T2DM). Methods: We conducted a two-sample MR analysis on data from the Breast Cancer Association Consortium (BCAC) and risk factor summary estimates from the GWAS Catalog. The BCAC data included 86,627 female patients of European ancestry with 7054 breast cancer-specific deaths during 15 years of follow-up. Of these, 59,378 were estrogen receptor (ER)-positive and 13,692 were ER-negative breast cancer patients. For the significant association, we used sensitivity analyses and a multivariable MR model. All risk factor associations were also examined in a model adjusted by other prognostic factors. Results: Increased genetic liability to T2DM was significantly associated with worse breast cancer-specific survival (hazard ratio [HR] = 1.10, 95% confidence interval [CI] = 1.03–1.17, P value [P] = 0.003). There were no significant associations after multiple testing correction for any of the risk factors in the ER-status subtypes. For the reported significant association with T2DM, the sensitivity analyses did not show evidence for violation of the MR assumptions nor that the association was due to increased BMI. The association remained significant when adjusting by other prognostic factors. Conclusions: This extensive MR analysis suggests that T2DM may be causally associated with worse breast cancer-specific survival and therefore that treating T2DM may improve prognosis

    Association between Common Germline Genetic Variation in 94 Candidate Genes or Regions and Risks of Invasive Epithelial Ovarian Cancer

    Get PDF
    Background: Recent studies have identified several single nucleotide polymorphisms (SNPs) in the population that are associated with variations in the risks of many different diseases including cancers such as breast, prostate and colorectal. For ovarian cancer, the known highly penetrant susceptibility genes (BRCA1 and BRCA2) are probably responsible for only 40% of the excess familial ovarian cancer risks, suggesting that other susceptibility genes of lower penetrance exist.Methods: We have taken a candidate approach to identifying moderate risk susceptibility alleles for ovarian cancer. To date, we have genotyped 340 SNPs from 94 candidate genes or regions, in up to 1,491 invasive epithelial ovarian cancer cases and 3,145 unaffected controls from three different population based studies from the UK, Denmark and USA.Results: After adjusting for population stratification by genomic control, 18 SNPs (5.3%) were significant at the 5% level, and 5 SNPs (1.5%) were significant at the 1% level. The most significant association was for the SNP rs2107425, located on chromosome 11p15.5, which has previously been identified as a susceptibility allele for breast cancer from a genome wide association study (P-trend = 0.0012). When SNPs/genes were stratified into 7 different pathways or groups of validation SNPs, the breast cancer associated SNPs were the only group of SNPs that were significantly associated with ovarian cancer risk (P-heterogeneity = 0.0003; P-trend = 0.0028; adjusted (for population stratification) P-trend = 0.006). We did not find statistically significant associations when the combined data for all SNPs were analysed using an admixture maximum likelihood (AML) experiment- wise test for association (P-heterogeneity = 0.051; P-trend = 0.068).Conclusion: These data suggest that a proportion of the SNPs we evaluated were associated with ovarian cancer risk, but that the effect sizes were too small to detect associations with individual SNPs

    Cancer stem cell markers in breast cancer: pathological, clinical and prognostic significance

    Get PDF
    INTRODUCTION: The cancer stem cell (CSC) hypothesis states that tumours consist of a cellular hierarchy with CSCs at the apex driving tumour recurrence and metastasis. Hence, CSCs are potentially of profound clinical importance. We set out to establish the clinical relevance of breast CSC markers by profiling a large cohort of breast tumours in tissue microarrays (TMAs) using immunohistochemistry (IHC). METHODS: We included 4, 125 patients enrolled in the SEARCH population-based study with tumours represented in TMAs and classified into molecular subtype according to a validated IHC-based five-marker scheme. IHC was used to detect CD44/CD24, ALDH1A1, aldehyde dehydrogenase family 1 member A3 (ALDH1A3) and integrin alpha-6 (ITGA6). A 'Total CSC' score representing expression of all four CSC markers was also investigated. Association with breast cancer specific survival (BCSS) at 10 years was assessed using a Cox proportional-hazards model. This study was complied with REMARK criteria. RESULTS: In ER negative cases, multivariate analysis showed that ITGA6 was an independent prognostic factor with a time-dependent effect restricted to the first two years of follow-up (hazard ratio (HR) for 0 to 2 years follow-up, 2.4; 95% confidence interval (95% CI), 1.2 to 4.8; P = 0.009). The composite 'Total CSC' score carried independent prognostic significance in ER negative cases for the first four years of follow-up (HR for 0 to 4 years follow-up, 1.3; 95% CI, 1.1 to 1.6; P = 0.006). CONCLUSIONS: Breast CSC markers do not identify identical subpopulations in primary tumours. Both ITGA6 and a composite Total CSC score show independent prognostic significance in ER negative disease. The use of multiple markers to identify tumours enriched for CSCs has the greatest prognostic value. In the absence of more specific markers, we propose that the effective translation of the CSC hypothesis into patient benefit will necessitate the use of a panel of markers to robustly identify tumours enriched for CSCs

    Evaluation of Polygenic Risk Scores for Breast and Ovarian Cancer Risk Prediction in BRCA1 and BRCA2 Mutation Carriers

    Get PDF
    Background:\textbf{Background:} Genome-wide association studies (GWAS) have identified 94 common single-nucleotide polymorphisms (SNPs) associated with breast cancer (BC) risk and 18 associated with ovarian cancer (OC) risk. Several of these are also associated with risk of BC or OC for women who carry a pathogenic mutation in the high-risk BC and OC genes BRCA1\textit{BRCA1} or BRCA2\textit{BRCA2}. The combined effects of these variants on BC or OC risk for BRCA1 and BRCA2 mutation carriers have not yet been assessed while their clinical management could benefit from improved personalized risk estimates. Methods:\textbf{Methods:} We constructed polygenic risk scores (PRS) using BC and OC susceptibility SNPs identified through populationbased GWAS: for BC (overall, estrogen receptor [ER]–positive, and ER-negative) and for OC. Using data from 15 252 female BRCA1\textit{BRCA1} and 8211 BRCA2\textit{BRCA2} carriers, the association of each PRS with BC or OC risk was evaluated using a weighted cohort approach, with time to diagnosis as the outcome and estimation of the hazard ratios (HRs) per standard deviation increase in the PRS. Results:\textbf{Results:} The PRS for ER-negative BC displayed the strongest association with BC risk in BRCA1\textit{BRCA1} carriers (HR = 1.27, 95% confidence interval [CI] = 1.23 to 1.31, PP = 8.2 ×\times 1053^{-53}). In BRCA2\textit{BRCA2} carriers, the strongest association with BC risk was seen for the overall BC PRS (HR = 1.22, 95% CI = 1.17 to 1.28, PP = 7.2 ×\times 1020^{-20}). The OC PRS was strongly associated with OC risk for both BRCA1\textit{BRCA1} and BRCA2\textit{BRCA2} carriers. These translate to differences in absolute risks (more than 10% in each case) between the top and bottom AR deciles of the PRS distribution; for example, the OC risk was 6% by age 80 years for BRCA2\textit{BRCA2} carriers at the 10th percentile of the OC PRS compared with 19% risk for those at the 90th percentile of PRS. Conclusions:\textbf{Conclusions:} BC and OC PRS are predictive of cancer risk in BRCA1\textit{BRCA1} and BRCA2\textit{BRCA2} carriers. Incorporation of the PRS into risk prediction models has promise to better inform decisions on cancer risk management.Cancer Research U

    A tumor DNA complex aberration index is an independent predictor of survival in breast and ovarian cancer

    Get PDF
    Complex focal chromosomal rearrangements in cancer genomes, also called "firestorms", can be scored from DNA copy number data. The complex arm-wise aberration index (CAAI) is a score that captures DNA copy number alterations that appear as focal complex events in tumors, and has potential prognostic value in breast cancer. This study aimed to validate this DNA-based prognostic index in breast cancer and test for the first time its potential prognostic value in ovarian cancer. Copy number alteration (CNA) data from 1950 breast carcinomas (METABRIC cohort) and 508 high-grade serous ovarian carcinomas (TCGA dataset) were analyzed. Cases were classified as CAAI positive if at least one complex focal event was scored. Complex alterations were frequently localized on chromosome 8p (n = 159), 17q (n = 176) and 11q (n = 251). CAAI events on 11q were most frequent in estrogen receptor positive (ER+) cases and on 17q in estrogen receptor negative (ER) cases. We found only a modest correlation between CAAI and the overall rate of genomic instability (GII) and number of breakpoints (r = 0.27 and r = 0.42, p <0.001). Breast cancer specific survival (BCSS), overall survival (OS) and ovarian cancer progression free survival (PUS) were used as clinical end points in Cox proportional hazard model survival analyses. CAAI positive breast cancers (43%) had higher mortality: hazard ratio (HR) of 1.94 (95%CI, 1.62-2.32) for BCSS, and of 1.49 (95%CI, 1.30-1.71) for OS. Representations of the 70-gene and the 21-gene predictors were compared with CAAI in multivariable models and CAAI was independently significant with a Cox adjusted HR of 1.56 (95%CI, 1.23-1.99) for ER+ and 1.55 (95%CI, 1.11-2.18) for ER disease. None of the expression-based predictors were prognostic in the ER subset. We found that a model including CAM and the two expression-based prognostic signatures outperformed a model including the 21-gene and 70-gene signatures but excluding CAAL Inclusion of CAAI in the clinical prognostication tool PREDICT significantly improved its performance. CAAI positive ovarian cancers (52%) also had worse prognosis: HRs of 1.3 (95%CI, 1.1-1.7) for PFS and 1.3 (95%CI, 1.1-1.6) for OS. This study validates CAM as an independent predictor of survival in both ER+ and ER breast cancer and reveals a significant prognostic value for CAAI in high-grade serous ovarian cancer. (C) 2014 The Authors. Published by Elsevier B.V. on behalf of Federation of European Biochemical Societies. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).Publisher PDFPeer reviewe
    corecore