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ABSTRACT 

Purpose:  

The proliferation of gene-panel testing precipitates the need for a breast cancer (BC) risk model that 

incorporates the effects of mutations in several genes and family history (FH). We extended the 

BOADICEA model to incorporate the effects of truncating variants in PALB2, CHEK2 and ATM. 

Methods: 

The BC incidence was modelled via the explicit effects of truncating variants in BRCA1/2, PALB2, 

CHEK2 and ATM and other unobserved genetic effects using segregation analysis methods. 

Results: 

The predicted average BC risk by age 80 for an ATM mutation carrier is 28%, 30% for CHEK2, 50% for 

PALB2, 74% for BRCA1 and BRCA2. However, the BC risks are predicted to increase with FH-burden.  

In families with mutations, predicted risks for mutation-negative members depend on both FH and 

the specific mutation. The reduction in BC risk after negative predictive-testing is greatest when a 

BRCA1 mutation is identified in the family, but for women whose relatives carry a CHEK2 or ATM 

mutation, the risks decrease slightly. 

Conclusions:  

The model may be a valuable tool for counselling women who have undergone gene-panel testing 

for providing consistent risks and harmonizing their clinical management. A web-application can be 

used to obtain BC- risks in clinical practice (http://ccge.medschl.cam.ac.uk/boadicea/). 

 

Keywords: breast cancer; risk prediction; BOADICEA; BRCA1; BRCA2; PALB2; CHEK2; ATM; user 

interface; gene-panel 

http://ccge.medschl.cam.ac.uk/boadicea/
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INTRODUCTION  

Breast cancer exhibits strong familial aggregation, such that the risk of the disease increases with 

increasing number of affected relatives. First degree relatives of women diagnosed with breast 

cancer are at approximately 2 times greater risk of developing breast cancer themselves than 

women from the general population1. Many breast cancer susceptibility variants have been 

identified to date. Approximately 15-20% of this excess familial risk is explained by rare, high 

penetrance mutations in BRCA1 and BRCA22,3. Other rare, intermediate risk variants (e.g. mutations 

in PALB2, CHEK2 and ATM) are estimated to account for ~5% of the breast cancer familial 

aggregation4-6, and the common, low-risk alleles identified through genome-wide association studies 

to account for a further 14% of the familial risk7,8.  

To provide comprehensive genetic counselling for breast cancer, it is important to have risk 

prediction models that take into account the effects of all the known breast cancer susceptibility 

variants, and also account for the residual familial aggregation of the disease. Some existing genetic 

risk prediction algorithms incorporate the explicit effects of BRCA1 and BRCA2 mutations, including 

BRCAPRO9, IBIS10 and BOADICEA3,11. BOADICEA accounts for the residual familial aggregation of 

breast cancer in terms of a polygenic component that models the multiplicative effects of a large 

number of variants each making a small contribution to the familial risk3.  

Next generation sequencing technologies that enable the simultaneous sequencing of multiple 

genes through gene-panels12,13 have now entered clinical practice. However, the clinical utility of 

results from such genetic testing remains limited as none of the currently available risk prediction 

models incorporate the simultaneous effects of the rare-intermediate risk variants and other breast 

cancer risk factors, in particular explicit family history. As a result, providing risk estimates for 

women who carry these mutations, and their relatives, is problematic6.  

In this paper, we describe an extension to the BOADICEA model to incorporate the effects of 

intermediate risk variants for breast cancer, specifically loss of function mutations in the three genes 
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for which the evidence for association is clearest and the risk estimates most precise: PALB2, CHEK2 

and ATM. The resulting model allows for consistent breast cancer risk prediction in unaffected 

women on the basis of their genetic testing results and their family history.  

MATERIALS AND METHODS 

Breast Cancer Incidence in BOADICEA 

We build on the existing BOADICEA model2,3,11. Briefly, in this model, the breast cancer incidence, 

 ti , for individual i  at age t is assumed to be birth cohort specific, and to depend on the 

underlying BRCA1 and BRCA2 genotypes and the polygenotype through a model of the form: 

           tPGGtGttt iiiii  212110 1exp  ,                                                         Equation(1) 

where  t0  is the baseline incidence for the cohort, iG1 is an indicator variable taking values 1 if a 

BRCA1 mutation is present and 0 otherwise, and similarly iG2 for BRCA2.  t1  and  t2  represent 

the age-specific log-relative risks associated with BRCA1 and BRCA2 mutations respectively, relative 

to the baseline incidence (applicable to a non-mutation carrier with a zero polygenic component) 

and where  tPi  is the polygenic effect, assumed to be normally distributed with mean 0 and 

variance  tP

2 . 

The effects of mutations in BRCA1 and BRCA2 are modelled through a single locus “major gene” with 

three alleles (BRCA1, BRCA2 and wild-type). The BRCA1 and BRCA2 alleles are assumed to be 

dominantly inherited14. As a further simplification, carriers of both the BRCA1 and BRCA2 alleles are 

assumed to be susceptible to BRCA1 risks. These simplifications reduce the number of possible 

“major” genotypes from 9 to 3: (1) being a BRCA1 mutation carrier; (2) being a BRCA2 mutation 

carrier; and (3) being a non-mutation carrier.  
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The BOADICEA genetic model uses the Elston-Stewart peeling algorithm to compute the pedigree 

likelihood15,16. As a result, the number of computations increases exponentially with the number of 

possible genotypes in the model. To maintain computational efficiency, we incorporated the effects 

of risk-conferring variants in PALB2, CHEK2 and ATM into the model by introducing an additional 

allele for each gene (representing a mutation in that gene) to the BRCA1/2 major gene locus, 

resulting in a locus with 6 alleles. In comparison with a model that has a single locus for each gene, 

this approximation can be justified by the low allele mutation frequencies for all genes (Table 1), 

because the probability of carrying mutations in more than one of these genes is low17, relative to 

the probability of carrying one or no mutation. Currently, few published data describe the cancer 

risks to individuals carrying more than one mutation18. Here we have assumed that the risks follow a 

dominant model, with the order of precedence being BRCA1, BRCA2, PALB2, CHEK2, ATM and wild-

type. Under this model, in the presence of a mutation in one gene, no additional risk is conferred by 

a second mutation in another gene lower in the dominance chain.  

Relative Risks for Female Breast Cancer 

We extended the model for the breast cancer incidence to incorporate the effects of rare variants in 

PALB2, CHEK2 and ATM, such that: 

            



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  






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1

1

1

0 1exp






 tPtGtGttt Riiii ,                                                       Equation(2) 

where  0 ,  t1 , iG1 ,  t2  and iG2  are as described in Equation(1), and  iG3 , iG4 , and iG5 , are 

indicator variables taking values 1 if a mutation is present and 0 otherwise, for PALB2, CHEK2 and 

ATM respectively.  t3 ,  t4  and  t5  represent the age-specific log-relative risks associated 

with PALB2, CHEK2 and ATM mutations respectively, relative to the baseline incidence (applicable to 

a non-mutation carrier with a zero polygenic component).  tPRi  is the residual polygenic 

component, with mean 0, and variance  tR

2 , explained below. 
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To implement the model, we assumed the mutation frequencies and relative risks (RRs) summarised 

in Table 1. The RR estimates (Table 1) represent estimates relative to the population incidences and 

are therefore RR over all polygenic effects. Multiplying the RRs (Table 1) by the cohort and age 

specific incidences yields the average incidences in carriers of PALB2, CHEK2 and ATM mutations 

over all polygenic effects. To obtain  t3 ,  t4  and  t5 , we constrained the overall incidences 

(using as weights the major genotype and polygenic frequencies)  to agree with the population 

breast cancer incidence, for each birth cohort separately. This process is described in detail 

elsewhere14 

To ensure that the familial risks predicted by this extended model remain consistent with the 

previous model, we adjusted the variance of the polygenic component to account for the fact that 

the contributions of PALB2, CHEK2 and ATM to the genetic variance are now explicitly accounted for 

in the major gene, following the process described in19. Briefly, the total polygenic variance ( 2

P ) 

was decomposed into the sum of the known variance ( 2

K ), due to the three variants, and residual 

variance ( 2

R ),  

222

RKP   , 

The known variance, 2

K , can be calculated as a function of the joint RRs and mutation frequencies 

of the three risk variants19. This assumes that the effect of each variant and the effect of residual 

polygene (which describes residual familial aggregation) are multiplicative. This is in line with recent 

findings for PALB2 mutations20. This model is also consistent with the higher RR for CHEK2 1100delC 

for breast cancer based on familial cases21,22, the higher RR for bilateral breast cancer23, and  the 

increased risk of breast cancer in relatives of breast cancer patients who are CHEK2 carriers24. A 

higher RR for familial breast cancer for ATM carriers has also been found, though the data are more 

limited for ATM25. 
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PALB2 Characteristics 

As there are very limited data from case-control studies for PALB2 or ATM, we used alternative 

family-based data. Age dependent RRs of female breast cancer for carriers of loss of function 

variants in PALB2 were taken from a large collaborative family-based study20. With the exception of 

specific Nordic founder mutations, data on mutation frequencies in the general population are 

sparse. We assumed a mutation allele frequency of 0.057% (or a mutation frequency of ~0.11% 

(10/8705)) based on data from targeted sequencing of 8705 controls from the UK (unpublished 

data). This is close to the average estimate across published estimates26. 

CHEK2 Characteristics 

Most existing data describe the CHEK2 1100delC variant, which is the most common truncating 

variant in northern European populations27. CHEK2 1100delC has been evaluated in many case-

control studies22,28. As a result, we based the CHEK2 estimates on the CHEK2 1100delC carrier 

estimates from a meta-analysis28. We assumed that the allele frequency of the 1100delC mutations 

was 0.26%, the combined frequency across unselected population controls of European ancestry28. 

The missense variant CHEK2 I157T has also been shown to confer increased risks of breast cancer7,29. 

However, these risks are much lower than those conferred by CHEK2 1100delC, and are closer to 

those conferred by common susceptibility variants. Consequently, CHEK2 I157T has been included in 

published Polygenic Risk Scores with other common-low penetrance alleles, and it will be included in 

future model extensions30. 

There is some evidence that the RRs for breast cancer in CHEK2 1100delC carriers decline with age22. 

However, since age-specific estimates are currently imprecise, we used a single RR estimate across 

all ages. 
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ATM Characteristics 

We obtained estimates for truncating mutations in ATM from a combined analysis of three 

estimates from cohort studies of relatives of Ataxia-Telangiectasia (A-T) patients (Table 1)6. The large 

majority of A-T patients carry two truncating ATM mutations, and relatives of A-T patients are 

therefore known to have a high probability of being carriers of an ATM mutation. We assumed that 

the allele frequency of truncating variants in ATM was 0.19% based on data from UK controls25. As 

for CHEK2, there is some evidence of a decline in RR with age31, but in the absence of relative age-

specific estimates, we used a single estimate across all ages. 

Relative Risks for Other Cancers 

In addition to the risks of female breast cancer, BOADICEA takes into account the associations of 

BRCA1 and BRCA2 mutations with the risks of male breast cancer, ovarian cancer, male and female 

pancreatic cancer, and prostate cancer3. Several studies have investigated the associations of the 

truncating variants in PALB2, ATM and CHEK2 1100delC with the risks of these cancers (and 

others)20,29,31,32. However, none of the studies have provided convincing evidence of association for 

any of these cancers, and accurate penetrance estimates are currently lacking for those cancers that 

may have associations. Therefore, for the purpose of the current implementation, we assumed that 

these mutations are not associated with elevated risks of other cancers.  

Incorporating Breast Tumour Pathology Characteristics 

Previous studies2,11 describe the incorporation into BOADICEA of differences in tumour pathology 

subtypes between BRCA1, BRCA2 and non-carrier breast cancers. Specifically, BOADICEA includes 

information on tumour oestrogen receptor (ER) status, triple negative (oestrogen, progesterone and 

HER2 negative) (TN) status, and the expression of the basal cytokeratin markers CK5/6 and CK14.  

Breast cancers in CHEK2 1100delC mutation carriers have been found to be ER-positive, at a greater 

proportion compared to tumours in non-CHEK2 mutation carriers (ER-positive tumours in CHEK2 
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1100delC carriers=88% (290/331) vs 78% in general population)33. Reliable data pertaining to the TN 

and basal cytokeratin receptor status are not currently available. Therefore, in the current 

implementation, we only incorporated differences by breast cancer ER-status for CHEK2 1100delC 

carriers, assuming that 88% of tumours in carriers are ER-positive. Age specific distributions were 

not available. 

 Published data on the prevalence of these tumour subtypes in PALB2 associated breast cancers are 

currently sparse, and although some differences compared to the general population have been 

reported, these are based on small numbers20,34. Currently there are no available data pertaining to 

tumour pathology subtype distributions for carriers of ATM truncating mutations. We therefore 

assumed that the tumour subtype distributions for PALB2 and ATM mutation carriers are the same 

as in the general population. 

Mutation Screening Sensitivity 

We have introduced separate mutation test screening sensitivities for PALB2, CHEK2 and ATM to 

allow for the fact that some risk-conferring variants in these genes may be missed by current 

screening methods. In the BOADICEA Web Application (BWA), we assumed default values of 90% for 

PALB2 and ATM truncating variants, and 100% for the CHEK2 1100delC variant. However, these 

values can be customised by users, where appropriate. The specificity of mutation testing was 

assumed to be 100%.  

RESULTS 

Fig 1(a) (and Fig S1) shows the implied average cumulative breast cancer risks predicted by 

BOADICEA by mutation status, on the basis of the assumed RR parameters for an unaffected female 

aged 20 born in 1975. The predicted average breast risk by age 80 for a CHEK2 mutation carrier was 

29.9%, 28.2% for ATM, 50.1% for PALB2, 73.5% for BRCA1 and 73.8% for BRCA2.  
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On the basis of the assumed mutation frequencies and RRs and modelling assumptions, the known 

polygenic variance (  tK

2 ) due to the effects of PALB2, CHEK2 and ATM are given in Table 2. The 

age dependence of the variances due to PALB2, CHEK2 and ATM is a consequence of the fact that 

relative risks vary with age (in particular for PALB2) and the age dependence of the frequency of 

mutation carriers among the unaffected population, which decreases with age (elimination effect).    

The proportion of polygenic variance accounted for by the three genes varied from 3.0% at age 25 to 

9.8% at age 75.  

Mutation Carrier Probabilities 

Fig 2 shows the mutation carrier probabilities predicted by BOADICEA for each gene, for (a) a female 

with unknown family history as a function of her age of cancer diagnosis, and (b) for a 30 year old 

female diagnosed with breast cancer, whose mother has had breast cancer, as a function of her 

mother’s age at diagnosis (also given in Tables S1 and S2). The mutation carrier probabilities for ATM 

and CHEK2 did not show a marked change with age at diagnosis (reflecting the assumption of a 

constant RR by age), but the mutation carrier probabilities decreased with age for PALB2, though 

less markedly than for BRCA1 or BRCA2. As expected, the mutation carrier probabilities were higher 

for women with a family history, but the effect was more marked for BRCA1, BRCA2 and PALB2 than 

for CHEK2 or ATM.  

Predicted Cancer Risks for Mutation Carriers are Family History Specific 

In our model, the residual polygenic component was assumed to act multiplicatively with PALB2, 

CHEK2 and ATM mutations on the risk of developing breast cancer. As a result, the breast cancer 

risks for mutation carriers will vary by family history of breast cancer. Fig 1 shows the predicted 

cumulative breast cancer risk for a 20 year old UK woman born in 1975 by her mutation status. In (a) 

the woman was assumed to have unknown family history; in (b) to have a mother affected with 

breast cancer at age 40; and in (c) to have a mother and sister who are cancer free at ages 70 and 50 

respectively. The figures show clearly that the predicted breast cancer risks increased with 



13 
 

increasing number of affected relatives, and depend on the phenotypes of the unaffected family 

members. For example, although the average breast cancer risks by age 80 for CHEK2 and ATM 

mutation carriers were lower than 30% (a common criterion for “high” risk, used for example in the 

NICE guideline35) the breast cancer risk exceeded this threshold when a mutation carrier had a family 

history of breast cancer (e.g. 42.6% for an ATM and 44.7% for CHEK2 mutation carrier with an 

affected mother).  Comparing Figures 1 (c) and 1 (a) we see that the risk for a woman with no history 

of breast cancer is lower than the average breast cancer risk. 

The Effect of Negative Predictive Testing 

The extended BOADICEA model can also be used to calculate the predicted risks in families in which 

mutations are identified, but other family members test negative for the mutation. This is 

demonstrated for a number of family history scenarios in Fig 3, which each depend on the mutation 

status of the proband and her mother. The predicted risks for mutation negative family members 

depend on both the family history of breast cancer and the specific mutation identified in the family. 

Thus for families with a history of breast cancer, namely (c), (e) and (g), the reduction in breast 

cancer risk after negative predictive testing is greatest when a BRCA1 mutation was identified in the 

family, with the risks being close to (though still somewhat greater than) the correspond risks based 

on population rates. This effect was most noticeable for women with a strong family history. The 

reduction in risk in women whose mother carried a BRCA2 or PALB2 mutation is less marked, while 

for women whose mother carried a CHEK2 or an ATM mutation, the risks decreased only slightly 

with a negative predictive test, even for women with a strong family history. For a woman with no 

history of breast cancer(Figure 3 (a)), her risk on the basis of family history alone (i.e. in an untested 

family)  was slightly lower than the population risk. After negative predictive testing her predicted 

risk decreased further. The biggest decrease was observed when a BRCA1 mutation was identified in 

the mother. 
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Updates to the BOADICEA Web Application 

We have now updated the BWA (http://ccge.medschl.cam.ac.uk/boadicea/) to accommodate the 

extensions to the BOADICEA model presented here. The BWA enables users to either build a 

pedigree online for processing, or to upload a text file containing one or more pedigrees for 

processing. When users build an input pedigree online, the program now enables users to specify 

PALB2, CHEK2 and ATM genetic test results in risk calculations. Similarly, we have extended the 

BOADICEA import/export format (described in Appendix A of the BWA v4 user guide: 

https://pluto.srl.cam.ac.uk/bd4/v4/docs/BWA_v4_user_guide.pdf) so that users can include this 

information in the text files that they upload for processing. 

DISCUSSION 

Cost-effective sequencing technologies have brought multi-gene panel testing into mainstream 

clinical care6,13,36. Although several established breast cancer susceptibility genes are included in 

these panels, their clinical utility is limited by the lack of risk prediction models that consider the 

effects of mutations in these genes and other risk factors for breast cancer, in particular family 

history. Here, we present an extended BOADICEA model that incorporates the effects of rare protein 

truncating variants in PALB2, CHEK2 and ATM. This is the first breast cancer risk prediction model to 

include the explicit effects of breast cancer susceptibility genes other than BRCA1 and BRCA2, and it 

can be used to provide comprehensive risk counselling on the basis of family history and mutation 

screening in the five genes. The model can also be used to predict future risks of developing breast 

cancer and the likelihood of carrying truncating mutations in any of the five genes.  

The extended BOADICEA model is based on a number of assumptions. To ensure the model is 

computationally efficient we used a single "major" locus with six alleles representing the truncating 

variants in the five genes and a wild-type allele.  In comparison with a genetic model consisting of 5 

separate loci each with 2 alleles, this should be a reasonable approximation as all the variants are 

http://ccge.medschl.cam.ac.uk/boadicea/
https://pluto.srl.cam.ac.uk/bd4/v4/docs/BWA_v4_user_guide.pdf
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rare. Algebraically leading errors should be proportional to the product of any two allele 

frequencies, which is of the order of 610 . Our empirical measurements confirm that this is the case, 

with leading differences in the 6th significant figure. However, it is possible the errors will be greater 

in families segregating more than one rare variant. It also represents a substantial reduction in the 

number of genotypes (36 V’s 1024), and hence in execution time; we measure execution time to be 

reduced by a factor of 21000. These simplifications will become more critical as the number of 

susceptibility genes included in the model increases. A previous study6 identified six other genes for 

which the association with breast cancer was well established (TP53, PTEN, STK11, CDH1, NF1 and 

NBN), and this list is likely to increase as large exome- and targeted- sequencing studies are 

completed. 

In the absence of robust data on the risks conferred by carriers of 2 or more truncating variants (in 

different genes), we assumed that dual mutation carriers develop breast cancer according to 

incidences for the higher penetrance gene. Recent evidence suggests that gene-gene interaction 

between CHEK2, ATM, BRCA1 and BRCA2 may not be multiplicative (indeed a multiplicative model 

would clearly be implausible for BRCA1 and BRCA2, since it would predict an extremely high risk to 

double mutation carriers at very young ages)18. This may reflect the biological relationships between 

the proteins encoded by the genes. The proteins encoded by all five genes play roles in DNA repair, 

and loss of function mutations in these genes are predicted to impair DNA repair. Our 

implementation would be consistent with a model where if the pathway is disrupted by one 

mutation, further disruption by a lower penetrance mutation would not lead to an increased risk.  

Although there is strong evidence that mutations in PALB2, CHEK2 and ATM confer increased risk of 

breast cancer in females6, there are currently no precise risk estimates for the other cancers 

considered by BOADICEA (male breast, ovarian, pancreatic or prostate), or indeed other cancers. 

However, several studies have provided tentative evidence of associations20,32. Due to the lack of 

precise cancer risk estimates, we have assumed no association between truncating variants in 



16 
 

PALB2, CHEK2 and ATM (i.e. RR=1). If there are true associations between the PALB2, CHEK2 and 

ATM truncating variants and other cancer risks, we expect that PALB2, CHEK2 and ATM mutation 

carrier probabilities may potentially be underestimated in families where other cancers occur. 

However, our implementation is flexible enough that should accurate risk estimates for other 

cancers become available, they can easily be included. 

BOADICEA allows data on cancer tumour characteristics to be taken into account, as we have done 

previously for BRCA1 and BRCA22,11,37. The provision of subtype-specific risks can be useful for 

genetic counselling and may guide chemoprevention. However, data on the additional genes are 

currently sparse. In this model, we incorporated a higher probability of ER-positive tumours in 

CHEK2 1100delC carriers, relative to non-carriers33. Some studies have suggested differences in the 

characteristics of tumours from PALB2 mutation carriers and non-carriers, but larger studies will be 

required to establish such differences20,34.  

In this model, we considered only the effects of truncating variants in PALB2, ATM and of  the CHEK2 

1100delC variant, for which reasonably robust breast cancer risk estimates are available. In doing 

this, we are making the usual simplification that all truncating variants in these genes confer similar 

risks. While there is no evidence to contradict this, it may change as further data accumulate. In 

addition, there is evidence that missense variants in both CHEK2 and ATM also confer elevated 

breast cancer risks, but that the risks that they confer can differ from the risks associated with 

truncating variants. For example, the ATM c.7271T>G missense variant has been reported to confer 

a higher risk than truncating variants, but the confidence intervals associated with this estimate are 

currently wide38. It has been suggested that other rare, evolutionarily unlikely missense variants in 

ATM are also associated with increased breast cancer risks39. Future extensions of BOADICEA can 

accommodate such differences on the basis of more precise cancer risk estimates. In CHEK2, the 

missense variant Ile157Thr has been associated with a lower risk than the 1100delC variant40. This 

variant has been recently incorporated into a polygenic risk score on the basis of common genetic 
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variants30 and we expect to incorporate this into BOADICEA through ongoing extensions that will 

include the effects of common genetic variants. The model could also be applicable for other 

truncating variants in CHEK2 , under the assumption that they confer similar risks to the 1100delC 

variant. However, the available data are scarce and some modification of the mutation frequencies 

may be required.  

Under the BOADICEA model, women   testing   negative   for   known familial mutations (true 

negatives) and who have family history of breast cancer are predicted to be at higher risk of breast 

cancer  than the general population. The level of risk depends on both family history and the specific 

mutation identified in the family.  So far, epidemiological studies have reported estimates for “true 

negatives” only in the context of families with BRCA1 and BRCA2 mutations41-46 but the estimated 

relative risks (compared to the population risks) have been found to vary widely. Moreover, all the 

reported estimates are associated with wide confidence intervals because the studies have been 

based on small sample sizes. The reported estimates are summarised in Table S3.To provide a direct 

comparison with the predicted risks by BOADICEA we have also  included the implied relative risks 

for the “true negative” women in Figure 3 relative to the population risk in Table S3. These are all in 

line with the published estimates for true negatives. Therefore, the predictions by BOADICEA are 

consistent with published epidemiological data.  It is worth noting that if the true relative risks for 

the “true negatives” in families with BRCA1 and BRCA2 mutations are in line with those predicted by 

BOADICEA, very large prospective studies of “true negatives” will be necessary to demonstrate 

significant associations.  

 

The current model is a synthetic model, based on segregation analyses of families in the UK together 

with risk estimates derived from studies of European populations. We have previously implemented 

procedures for extrapolating the model to populations with different baseline incidence rates, on 

the assumption that the RRs conferred by the genetic variants in the model are independent of the 
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population11. Thus, the model should be broadly applicable to developed populations of European 

ancestry, but its applicability to populations with lower incidence rates, and populations of non-

European ancestry, has yet to be evaluated. The implementation also allows the allele frequencies to 

be adjusted. This may be particularly relevant for CHEK2; in European populations the founder 

1100delC variant accounts for the majority of carriers of truncating variants, and its frequency varies 

widely across populations.  

The extended BOADICEA model presented here has addressed a major gap in breast cancer risk 

prediction, by including the effects of truncating variants in PALB2, CHEK2 and ATM that are included 

in widely used commercial gene-panels. The model could be a valuable tool in the counselling 

process of women who have undergone gene-panel testing for providing consistent breast cancer 

risks and thus harmonizing the clinical management of at risk individuals. Future studies should aim 

to validate this model in large prospective cohorts with mutation screening information and to 

evaluate the impact of the risk predictions on decision making.
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TABLE AND FIGURE LEGENDS: 
Table 1. Mutation frequency and relative risks (RR) for loss of function variants in PALB2, CHEK2 and 

ATM. The RRs for PALB2 are taken from20. The mutation frequency for PALB2 is taken from a private 

communication from Easton and Pharaoh based on data from unaffected individuals from the UK. 

Relative risks for CHEK2 and ATM are taken from6. The allele frequency for CHEK2 is taken from28, 

and the allele frequency for ATM is taken from31. 

 

Table 2. The variance explained by PALB2, CHEK2 and ATM and the percentage of the overall 

polygenic variance explained by all three combined. 

 

Figure 1. BOADICEA Breast Cancer Risk by Mutation Status and Family History. BOADICEA risk by 

mutation status for a female in the UK age 20 born in 1975: (a) with unknown family history (i.e. for 

the average female in the population); (b) with her mother affected at age 40; (c) with her mother 

and sister unaffected at ages 70 and 50 respectively. No testing assumed in other family members, in 

all cases. 

 

Figure 2. BOADICEA Mutation Carrier Probabilities. BOADICEA mutation carrier probabilities for a 

female in the UK, born in 1975: (a) with unknown family history as a function of her breast cancer 

diagnosis age; (b) who was diagnosed with breast cancer at age 30 and whose mother was 

diagnosed with breast cancer, as a function of her mother’s age at diagnosis. 

 

Figure 3. BOADICEA Breast Cancer Risk for Negative Testing by Family History. The predicted risk of 

breast cancer for a 20 year old female in the UK, born in 1975 by her mother’s mutation status, for 

different family histories. The predicted risk is shown for four different family histories. The graphs 
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on the right hand side correspond to the pedigrees on the left hand side. The figures show the 

predicted risks for a proband (shown with an arrow)  in  families without any mutation testing in the 

five genes i.e. this corresponds to the predicted risk on the basis of family history information alone 

(grey curves). The rest of the curves correspond to the cases where the proband  is assumed to be 

negative for the mutation identified in the family. To enable direct comparisons, the proband is 

assumed to be 20 years old in all examples.   

 


