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Abstract

Background: Genome-wide association studies (GWAS) have identified 94 common single-nucleotide polymorphisms (SNPs)
associated with breast cancer (BC) risk and 18 associated with ovarian cancer (OC) risk. Several of these are also associated
with risk of BC or OC for women who carry a pathogenic mutation in the high-risk BC and OC genes BRCA1 or BRCA2. The
combined effects of these variants on BC or OC risk for BRCA1 and BRCA2 mutation carriers have not yet been assessed while
their clinical management could benefit from improved personalized risk estimates.
Methods: We constructed polygenic risk scores (PRS) using BC and OC susceptibility SNPs identified through population-
based GWAS: for BC (overall, estrogen receptor [ER]–positive, and ER-negative) and for OC. Using data from 15 252 female
BRCA1 and 8211 BRCA2 carriers, the association of each PRS with BC or OC risk was evaluated using a weighted cohort
approach, with time to diagnosis as the outcome and estimation of the hazard ratios (HRs) per standard deviation increase
in the PRS.
Results: The PRS for ER-negative BC displayed the strongest association with BC risk in BRCA1 carriers (HR¼1.27, 95% confi-
dence interval [CI] ¼ 1.23 to 1.31, P¼8.2�10�53). In BRCA2 carriers, the strongest association with BC risk was seen for the
overall BC PRS (HR¼1.22, 95% CI¼1.17 to 1.28, P¼7.2�10�20). The OC PRS was strongly associated with OC risk for both BRCA1
and BRCA2 carriers. These translate to differences in absolute risks (more than 10% in each case) between the top and bottom

A
R

T
IC

LE

Received: January 8, 2016; Revised: October 15, 2016; Accepted: November 16, 2016

© The Author 2017. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/),
which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

1 of 15

JNCI J Natl Cancer Inst (2017) 109(7): djw302

doi: 10.1093/jnci/djw302
First published online March 9, 2017
Article

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Apollo

https://core.ac.uk/display/77059309?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:antonis@srl.cam.ac.uk
http://www.oxfordjournals.org/


deciles of the PRS distribution; for example, the OC risk was 6% by age 80 years for BRCA2 carriers at the 10th percentile of the
OC PRS compared with 19% risk for those at the 90th percentile of PRS.
Conclusions: BC and OC PRS are predictive of cancer risk in BRCA1 and BRCA2 carriers. Incorporation of the PRS into risk
prediction models has promise to better inform decisions on cancer risk management.

Women who carry a pathogenic mutation in the BRCA1 or
BRCA2 gene are at high risk of developing breast and ovarian
cancers. The clinical management of healthy women with a
BRCA1 or BRCA2 mutation involves a combination of frequent
screening, risk-reducing surgeries, and chemoprevention (1).
Important decisions include whether or not to undergo prevent-
ive mastectomy and the age at which to undergo risk-reducing
salpingo-oophorectomy (RRSO). These choices are invasive,
have substantial side effects, and are associated with adverse
psychological effects (2–6). Improved personalized cancer risk
estimates may help to identify women at particularly high risk
or with high risk of disease at early ages who may benefit from
early intervention as well as women at lower risk who may opt
to delay surgery or chemoprevention (7). This could be achieved
by incorporating risk-modifying factors into risk prediction.

Population-based genome-wide association studies have
identified 94 common breast and 18 ovarian cancer susceptibility
loci (8–10). While a smaller number of these loci were associated
with risk in BRCA1 and BRCA2 mutation carriers at stringent stat-
istical significance thresholds, the effect sizes in carriers are gen-
erally similar to those in the general population, once differences
in the distributions of breast tumor estrogen receptor status in
mutation carriers and noncarriers are taken into account (9,11).
Individually the identified breast and ovarian cancer risk-
modifying variants confer only small to modest increases in risk.
However, their effects can be combined into polygenic risk scores
(PRSs), which may be associated with much larger relative risks
(12,13). Prior to the clinical implementation of these findings, it is
important to assess the predictive utility of PRS in terms of dis-
crimination, calibration, and potential for risk stratification (14).

Because women with BRCA1 and BRCA2 mutations are already
at high risk of developing breast and ovarian cancers, the combined
effects of risk-modifying variants could lead to much larger differ-
ences in the absolute risk of developing the disease as compared
with the general population (12,13,15,16). Earlier studies investigat-
ing the effect of PRS on the absolute risks of breast and ovarian can-
cer risks of BRCA1 and BRCA2 mutation carriers demonstrated
potential for risk stratification (13,17–19). However, these have been
based on small numbers of single-nucleotide polymorphisms
(SNPs; <15) and most were restricted to theoretical projections of
the PRS association rather than empirical evaluations.

In this study, we developed different PRSs for breast and
ovarian cancer as well as estrogen receptor (ER)–specific PRS
based on reported susceptibility loci from population-based
studies and evaluated their associations with risks for BRCA1
and BRCA2 carriers. We estimated absolute risks of developing
breast and ovarian cancer for individuals with different values
of the PRS in order to assess whether these PRS provide clinic-
ally useful risk stratification of mutation carriers.

Methods

Study Population

Eligible study subjects included in the Consortium of
Investigators of Modifiers of BRCA1/2 (CIMBA) are female

carriers of a pathogenic mutation in either BRCA1 or BRCA2 who
are age 18 years or older. Mutation carriers were recruited by 56
study centers in 26 countries. The majority were recruited
through cancer genetics clinics, and enrolled into national or re-
gional studies. We used data from 15 252 BRCA1 (breast cancer
¼ 7797, ovarian cancer ¼ 2462) and 8211 BRCA2 (breast cancer ¼
4330, ovarian cancer ¼ 631) mutation carriers who were geno-
typed with the iCOGS array. Quality control has been described
in detail elsewhere (11,13,18). Each of the host institutions re-
cruited mutation carriers under protocols approved by local eth-
ics review boards. Written informed consent was obtained from
all subjects. Only samples of European ancestry were included
in the present analysis.

Polygenic Risk Scores

The effects of cancer susceptibility variants on cancer risks for
mutation carriers were combined into PRS. The PRS for individ-
ual i was defined as the sum of the number of risk alleles across
k variants weighted by the effect size of each variant:

PRSi ¼ b1g1i þ . . .þ bkgki;

where gli is the genotype of person i for variant l, expressed as the
number of effect alleles (0, 1, or 2), and bl is the per-allele log risk
ratio (odds ratio [OR] or hazard ratio [HR]) (Supplementary Tables
1–6, available online) associated with the effect allele of SNP l.

The primary PRSs were based on SNPs found to be associated
with breast or ovarian cancer through genome-wide association
studies (GWASs) in the general population. For breast cancer,
we used the published PRSs for overall breast cancer, ER-
positive breast cancer, and ER-negative breast cancer (8,20). In
addition, we created updated PRSs based on findings from
population-based association and fine-mapping studies re-
ported before April 2015 (Supplementary Table 1, available on-
line) (8,10,21–28). More details on the variant selection are
provided in the Supplementary Methods (available online).

We developed an ovarian cancer PRS by including the most
strongly associated variant from each region associated at a
genome-wide statistical significance level with ovarian cancer
risk in population-based studies or studies that combined popu-
lation data and data from mutation carriers (Supplementary
Table 2, available online) (9,23).

We also constructed secondary BRCA1- and BRCA2-specific
PRSs that were based on all variants showing evidence of asso-
ciation in BRCA1 and BRCA2 carriers, using the results and
weights from the BRCA1- and BRCA2-specific GWASs (11–13)
(Supplementary Tables 3–6 and Supplementary Methods, avail-
able online). However, the studies that led to the identification
of these variants were based on the same data set as the present
analysis. Therefore, these BRCA1- and BRCA2-specific PRSs can-
not be independently validated in the present analysis. To re-
duce the bias from overfitting, we also constructed and
evaluated unweighted versions of these PRSs.

For the SNPs included in each PRS, we assessed whether
there was evidence for pairwise interactions (Supplementary
Methods, available online).
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Statistical Analysis

To account for the nonrandom sampling of mutation carriers
with respect to disease status, the association of each PRS with
breast or ovarian cancer risk was analyzed using a weighted
cohort Cox regression with time to breast or ovarian cancer diag-
nosis, respectively, as the outcome (Supplementary Methods,
available online) (29). We evaluated the associations of the breast
cancer PRS (ie, overall breast cancer PRS, ER-positive PRS, and ER-
negative PRS) with the risk for overall breast cancer for BRCA1 and
BRCA2 mutation carriers. The ovarian cancer PRS was assessed
for association with the risk of developing overall ovarian cancer
for BRCA1 and BRCA2 mutation carriers. For these analyses,
subjects were categorized into PRS percentile groups. To provide
easily interpretable associations, the association analyses were
repeated using continuous PRS predictors standardized to have
mean 0 and variance 1. We assessed whether the hazard ratio per
unit of the PRS varied with age by including a term for the inter-
action of the standardized PRS with age. We also fitted a Cox re-
gression that included separate PRS effects by age group.

To evaluate the ability of the PRS to discriminate between in-
dividuals developing breast or ovarian cancer at different ages,
we computed the rank Harrell’s c index (Supplementary
Methods, available online) (30).

Absolute age-specific cumulative risks of developing breast
or ovarian cancer at different percentiles of the standardized
PRS were calculated according to the approach described previ-
ously (Supplementary Methods, available online) (15,31).

Analyses were carried out in R using GenABEL (32) and in
STATA v13.1 (33). The associations of the continuous PRSs with
breast or ovarian cancer risk were evaluated using one-sided
statistical tests because we evaluated the directional hypothesis
of increased cancer risk with a higher PRS. All other statistical
tests were two-sided. Detailed methods are provided in the
Supplementary Methods (available online).

Results

PRS Associations With Cancer Risks

Using data from 15 252 BRCA1 and 8211 BRCA2 carriers
(Supplementary Table 7, available online), there was no evi-
dence for interaction between any two variants involved in any
of the PRSs after accounting for multiple testing (results not
shown). All breast cancer PRSs derived from population-based
study results (Supplementary Tables 1, available online) were
statistically significantly associated with breast cancer risks for

both BRCA1 and BRCA2 carriers (Table 1). Compared with the
PRS developed by Mavaddat et al. (Supplementary Table 9, avail-
able online), the updated breast cancer PRS displayed slightly
stronger associations in BRCA1 carriers, but no improvements
were seen in BRCA2 carriers.

The PRS for ER-negative breast cancer displayed the stron-
gest association with breast cancer risk in BRCA1 carriers (per
standard deviation HR¼ 1.27, 95% confidence interval [CI] ¼ 1.23
to 1.31, P¼ 8.2�10�53) (Table 1). Smaller HR estimates in BRCA1
breast cancer were seen for the PRS for overall breast cancer
(HR¼ 1.14, 95% CI¼ 1.11 to 1.17, P¼ 1.8�10�18) and ER-positive
breast cancer (HR¼ 1.11, 95% CI¼ 1.08 to 1.15, P¼ 3.5�10�13). In
BRCA2 carriers, the ER-negative breast cancer PRS displayed a
smaller per SD HR for breast cancer risk (HR¼ 1.15, 95% CI¼
1.10 to 1.20, P¼ 6.8�10�10) compared with BRCA1 carriers,
whereas the overall breast cancer PRS (HR¼ 1.22, 95% CI¼ 1.17
to 1.28, P¼ 7.2�10�20) and the ER-positive PRS (HR¼ 1.22, 95%
CI¼ 1.16 to 1.27, P¼ 4.0�10�19) displayed stronger associations.
The subsequent breast cancer analyses focus on the updated
ER-negative breast cancer PRS for BRCA1 carriers and the
updated overall breast cancer PRS for BRCA2 carriers.

Consistent with the above models, there were clear trends in
risk by PRS for both BRCA1 and BRCA2 carriers when PRS was
categorized by percentile (Table 2). The hazard ratio estimates
were consistent with those predicted by the model, in which
PRS was fitted as a continuous covariate (Figure 1).

We also investigated whether the associations for the most
strongly associated PRS differ by mutation type, as defined by
the mutation functional effect (Supplementary Methods, avail-
able online). There was marginal evidence of an interaction be-
tween the breast cancer risk PRS and class 2 mutations in
BRCA2 mutation carriers (P¼ 0.03, with a slightly higher HR esti-
mate for the PRS for class 2 mutation carriers).

The population-based ovarian cancer PRS was strongly associ-
ated with ovarian cancer risk in BRCA1 carriers with a per SD HR of
1.28 (95% CI¼ 1.22 to 1.34, P¼ 2.5�10�26) (Table 1). The hazard ratio
estimate was larger for ovarian cancer risk in BRCA2 carriers
(HR¼ 1.49, 95% CI¼ 1.34 to 1.65, P¼ 8.5�10�14). When we compared
the hazard ratio estimates against the hazard ratios predicted
under a multiplicative polygenic model, only the hazard ratio
estimate for BRCA2 carriers for the 60% to 80% category was statis-
tically significantly higher than the predicted value (Figure 1).

The unweighted BRCA1- and BRCA2-specific PRS for breast
and ovarian cancer, constructed on the basis of association re-
sults in CIMBA, showed strong evidence of association with
breast and ovarian cancer (Supplementary Table 10, available
online).

Table 1. Per-standard-deviation hazard ratios and 95% confidence intervals for the associations of polygenic risk scores with breast and ovar-
ian cancer risk in BRCA1 and BRCA2 carriers*

PRS No. of SNPs

BRCA1 carriers BRCA2 carriers

HR (95% CI) P† HR (95% CI) P†

Outcome: breast cancer
Overall BC PRS 88 1.14 (1.11 to 1.17) 1.8x10-18 1.22 (1.17 to 1.28) 7.2x10-20

ER-positive BC PRS 87 1.11 (1.08 to 1.15) 3.5x10-13 1.22 (1.16 to 1.27) 4.0x10-19

ER-negative BC PRS 53 1.27 (1.23 to 1.31) 8.2x10-53 1.15 (1.10 to 1.20) 6.8x10-10

Outcome: ovarian cancer
OC PRS 17 1.28 (1.22 to 1.34) 2.5x10-26 1.49 (1.34 to 1.65) 8.5x10-14

*The PRS created from the latest reported population-based study results were used. BC ¼ breast cancer; CI ¼ confidence interval; ER ¼ estrogen receptor; HR ¼ hazard

ratio; OC ¼ ovarian cancer; PRS ¼ polygenic risk score; SNP ¼ single-nucleotide polymorphism.

†P value for a one-sided test using a weighted cohort Cox regression with time to breast or ovarian cancer diagnosis, respectively, as the outcome.
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PRS x Age Interaction

There was evidence for a PRSxage interaction for the ER-
negative breast cancer PRS for BRCA1 carriers (P¼ 3�10�6) and
for the overall breast cancer PRS for BRCA2 carriers (P¼ .01)
(Table 3). In the ovarian cancer analysis, a statistically signifi-
cant interaction with age was seen for the ovarian cancer PRS
for BRCA1 carriers (P¼ .003). Each of these PRSs showed stronger
associations in younger age groups.

Discrimination

The ER-negative PRS had the highest value of Harrell’s (c ¼ 0.58,
95% CI¼ 0.57 to 0.59) for breast cancer in BRCA1 carriers (Table
4). For breast cancer in BRCA2 carriers, the highest values for
Harrell’s c were achieved by the population-based overall and
ER-positive breast cancer PRSs (c ¼ 0.56, 95% CI¼ 0.55 to 0.58, in
each case). For ovarian cancer, the OC-PRS had a c of 0.58 (95%
CI¼ 0.56 to 0.60) for BRCA1 carriers and a c of 0.63 (95% CI¼ 0.60
to 0.67) for BRCA2 carriers.

Predicted Absolute Risks by PRS Percentile

We used the age-specific hazard ratio estimates to compute ab-
solute cumulative breast and ovarian cancer risks for mutation
carrier by PRS percentiles (Figure 2). We used the updated ER-
negative PRS to predict breast cancer risk for BRCA1 carriers and
the updated overall breast cancer PRS to predict breast cancer
risk for BRCA2 carriers. BRCA1 carriers at the 10th percentile of
the PRS had a risk of 21% of developing breast cancer by age 50
years and a 56% risk by age 80 years. In contrast, the BRCA1

carriers at the 90th percentile of the PRS had a 39% breast cancer
risk by age 50 years and 75% by age 80 years. The ovarian cancer
risk was 6% by age 80 years for BRCA2 carriers at the 10th per-
centile of the ovarian cancer PRS compared with 19% risk for
those at the 90th percentile of PRS.

Discussion

This is the first evaluation of the combined effects of all known
common breast and ovarian cancer susceptibility loci on cancer
risks for women who carry a BRCA1 or BRCA2 mutation. We
found strong evidence of association with cancer risks for PRSs
constructed using the results of population-based studies.
These associations provide strong support for the hypothesis of
a polygenic component for breast and ovarian cancer risks, re-
spectively, that is largely shared between the general popula-
tion and BRCA1 and BRCA2 mutation carriers. Moreover, the
pattern of associations with the breast cancer subtype–specific
PRS confirms the importance of tumor ER status (11). The PRS
based on SNPs associated with ER-negative disease in the gen-
eral population displayed a much stronger association with
overall breast cancer risk for BRCA1 carriers than the ER-
positive PRS, consistent with the observation that the predom-
inant tumor subtype in BRCA1 carriers is ER negative (34,35). In
contrast, the majority of tumors in BRCA2 carriers tend to be ER
positive. Consistent with this, the ER-positive PRS and the PRS
for overall breast cancer constructed from general population
data exhibited stronger associations than the ER-negative PRS
in BRCA2 carriers.

Using the overall, ER-positive, and ER-negative breast cancer
PRSs developed by Mavaddat, the per SD hazard ratio estimates

Table 2. Proportion of samples and number of events in percentile categories of polygenic risk scores and their associations with breast and
ovarian cancer risks*

Percentile category, %

BRCA1 carriers BRCA2 carriers

No. of events
(% samples in

percentile category) HR (95% CI)†

No. of events
(% samples in

percentile category) HR (95% CI)†

Outcome: breast cancer
0–5 222 (3.6) 0.76 (0.64 to 0.91) 138 (4.0) 0.80 (0.63 to 1.02)
5–10 250 (4.1) 0.70 (0.59 to 0.82) 142 (4.2) 0.68 (0.54 to 0.87)
10–20 551 (8.7) 0.77 (0.68 to 0.87) 340 (8.9) 0.92 (0.77 to 1.09)
20–40 1377 (18.7) 0.98 (0.89 to 1.07) 764 (18.8) 1.00 (0.87 to 1.15)
40–60 1534 (20.4) 1 (ref.) 793 (19.1) 1 (ref.)
60–80 1729 (21.0) 1.21 (1.11 to 1.33) 950 (21.2) 1.16 (1.02 to 1.32)
80–90 950 (11.0) 1.32 (1.19 to 1.47) 557 (11.4) 1.37 (1.17 to 1.60)
90–95 519 (5.8) 1.50 (1.31 to 1.72) 309 (5.8) 1.76 (1.43 to 2.17)
95–100 665 (6.7) 1.82 (1.61 to 2.07) 337 (6.7) 1.51 (1.25 to 1.82)

Outcome: ovarian cancer
0–5 85 (4.7) 0.66 (0.51 to 0.86) 20 (4.8) 0.76 (0.39 to 1.47)
5–10 110 (5.3) 0.81 (0.64 to 1.02) 18 (5.3) 0.67 (0.34 to 1.32)
10–20 215 (10.5) 0.80 (0.66 to 0.96) 39 (10.4) 0.87 (0.54 to 1.39)
20–40 478 (20.9) 0.95 (0.82 to 1.10) 104 (20.4) 1.02 (0.71 to 1.46)
40–60 468 (19.9) 1 (ref.) 107 (20.4) 1 (ref.)
60–80 519 (19.5) 1.19 (1.03 to 1.38) 159 (19.5) 1.73 (1.25 to 2.40)
80–90 267 (9.3) 1.43 (1.20 to 1.70) 76 (9.1) 1.84 (1.24 to 2.72)
90–95 155 (4.9) 1.54 (1.24 to 1.91) 45 (4.8) 1.87 (1.16 to 3.02)
95–100 165 (5.1) 1.86 (1.51 to 2.29) 63 (5.4) 3.04 (2.00 to 4.61)

*The polygenic risk score (PRS) created from reported population-based study results were used. The percentile boundaries were derived assuming a normally distrib-

uted PRS. The estrogen receptor–negative breast cancer PRS was used for the associations with breast cancer risk in BRCA1 carriers and overall breast cancer PRS in

BRCA2 carriers. CI ¼ confidence interval; HR ¼ hazard ratio.

†Hazard ratio from a weighted cohort Cox regression with time to breast or ovarian cancer diagnosis, respectively, as the outcome.

A
R

T
IC

LE

4 of 15 | JNCI J Natl Cancer Inst, 2017, Vol. 109, No. 7

Deleted Text: X
Deleted Text: p&thinsp;&equals;&thinsp;
Deleted Text: p&thinsp;&equals;&thinsp;
Deleted Text: 0
Deleted Text: p&thinsp;&equals;&thinsp;
Deleted Text: 0
Deleted Text: c,
Deleted Text:  
Deleted Text:  (
Deleted Text: 95&percnt;CI:
Deleted Text: -
Deleted Text: ,
Deleted Text:  with values of 
Deleted Text:  (
Deleted Text: 95&percnt;CI:
Deleted Text: -
Deleted Text: )
Deleted Text: &equals;
Deleted Text:  (
Deleted Text: 95&percnt;CI:
Deleted Text: -
Deleted Text: c&thinsp;&equals;&thinsp;
Deleted Text:  (
Deleted Text: 95&percnt;CI:
Deleted Text: -
Deleted Text: B
Deleted Text: HR
Deleted Text: -
Deleted Text: o
Deleted Text: u
Deleted Text: -
Deleted Text: u
Deleted Text: -
Deleted Text: u
Deleted Text: -
Deleted Text: -
Deleted Text: -
Deleted Text: HR


in mutation carriers were smaller than the corresponding per
SD odds ratio estimates for breast cancer in the population-
based study (20). These observations suggest that the relative
extent by which the SNPs modify breast cancer risks in BRCA1

and BRCA2 mutation carriers is somewhat smaller than that in
the general population, perhaps because a subset of SNPs do
not combine multiplicatively with mutation status.
Alternatively, these observations may reflect a difference in the
design: Under a simple proportional hazards model, the pre-
dicted odds ratio is larger than the corresponding rate ratio
(HR), but this difference is usually small (36). Moreover, some
overestimation cannot be ruled out entirely for the per SD odds
ratio estimates from the population-based study because of a

winner’s curse effect. Interestingly, the hazard ratio estimate
for the association of the ovarian cancer PRS with ovarian can-
cer risk was statistically significantly higher for BRCA2 than for
BRCA1 mutation carriers. As a result, this PRS had also a higher
discriminatory ability for ovarian cancer for BRCA2 carriers
compared with BRCA1 mutation carriers.

Each of the most strongly associated PRSs displayed statistic-
ally significant interactions with age, with the exception of the
ovarian cancer PRS in BRCA2 carriers, such that the hazard ratio
per unit PRS decreased with increasing age. One possible explan-
ation for the observed interaction between age and the ER-
negative breast cancer PRS in BRCA1 mutation carriers could due
to the use of the ER-negative breast cancer PRS from the general
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Figure 1. Hazard ratios (HRs) and 95% confidence intervals (error bars) for percentiles of the polygenic risk score (PRS) relative to the middle quintile. The estrogen

receptor–negative breast cancer (BC) PRS (A) and the overall BC PRS (C) were used for breast cancer in BRCA1 and BRCA2 carriers, respectively, and the ovarian cancer

(OC) PRS for the OC associations (B, D). Lines denote the theoretical estimates under a multiplicative polygenic model with means and standard deviations of �x ¼ 0.10

and SD¼0.41 for the ER-negative BC PRS, �x ¼ 0.41 and SD¼0.50 for the overall BC PRS, �x ¼ 0.47 and SD¼0.37 for the OC PRS.
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population to predict the risk of overall breast cancer risk for
BRCA1 mutation carriers. Although the majority of breast cancers
in BRCA1 mutation carriers are ER negative, the proportion of ER-
negative breast tumors decreases with increasing age at diagno-
sis (35). If the population-based ER-negative PRSs were also asso-
ciated primarily with ER-negative breast cancers in BRCA1
mutation carriers, the ER-negative PRS would be more predictive
of breast cancer in BRCA1 carriers at younger ages. In contrast, in
BRCA2 carriers the proportion of ER-positive disease was found
to decrease with increasing age at diagnosis (35). Therefore, the
overall PRS from the general population, which is associated pri-
marily with ER-positive breast cancers, may be more predictive
of breast cancer in BRCA2 mutation carriers at younger ages.
Alternatively, it is possible that genetic risk modification has a
stronger effect on developing early-onset breast cancer.

A limitation of the present study is our inability to take fam-
ily history into account because this information was not avail-
able for the majority of samples. Although the tests of
association remain valid, it was therefore not possible to inves-
tigate how the associations vary by family cancer history.

Overall, the discrimination achieved by the PRS investigated
in the current study was moderate. The highest discrimination
was achieved by the ovarian cancer PRS in BRCA2 carriers. We
found the overall breast cancer PRS to have somewhat lower
discriminatory ability in mutation carriers compared with the
general population (20). However, given the different study de-
signs, ER tumor specificity in mutation carriers, and different
measures of relative risk, these model performance estimates
may not be directly comparable.

One possible explanation for the differences in the relative
risk of the PRS between the mutation carriers and the
population-based study is that not all variants identified in
population-based studies are actually associated with risk in
mutation carriers, perhaps as a result of functional redundancy
(9). Conversely, variants that specifically modify risk in muta-
tion carriers, examples of which have already been reported
(13,18), would not be included in PRSs derived from population-
based studies, and such variants might improve discrimination.
On the other hand, because of the large sample sizes available
in population-based studies, the SNP selection and the logOR
estimates used as weights for these PRSs are likely to be more
reliable than for PRSs based on mutation carriers. We also
derived BRCA1- and BRCA2-specific PRSs that include variants
discovered by population-based studies but only those showing
evidence of association in mutation carriers. This approach
makes use of the discovery power of population-based studies
while accounting for possible mutation carrier–specific differ-
ences in associations. However, the SNP selection and weights
were based on results from the same data set as that used in
the present analysis. For this reason, we investigated the associ-
ations of mutation carrier–specific PRSs without weights to re-
duce the possible overfitting. An analysis in an independent
sample of mutation carriers will be required to assess whether
these mutation-specific PRSs outperform population-based
PRSs.

The present study demonstrates that there are large differ-
ences in the absolute cancer risks between BRCA1 and BRCA2
mutation carriers with higher vs lower values of the PRS. These

Table 4. Discrimination of population-derived polygenic risk scores
for breast and ovarian cancer in BRCA1 and BRCA2 carriers*

PRS

Harrell’s c statistic (95% CI)

BRCA1 carriers BRCA2 carriers

Discrimination
for breast cancer
Overall BC PRS 0.541 (0.530 to 0.551) 0.566 (0.551 to 0.581)
ER-positive BC PRS 0.532 (0.522 to 0.543) 0.566 (0.551 to 0.581)
ER-negative BC PRS 0.581 (0.571 to 0.592) 0.538 (0.523 to 0.553)

Discrimination for
ovarian cancer
OC PRS 0.579 (0.559 to 0.600) 0.628 (0.592 to 0.665)

*BC ¼ breast cancer; CI ¼ confidence interval; ER ¼ estrogen receptor; OC ¼ ovar-

ian cancer; PRS ¼ polygenic risk score.

Table 3. Age-specific hazard ratio estimates for the PRS associations and HR estimates for a PRS x age interaction*

Age category, y

BRCA1 carriers BRCA2 carriers

No. of
events

HR per unit SD
increase in the

ER- PRS (95% CI) P†
No. of
events

HR per unit SD increase
in the overall

BC PRS (95% CI) P†

Outcome: breast cancer
18–39 4125 1.63 (1.52 to 1.74) – 1731 1.65 (1.44 to 1.88) –
40–49 2557 1.18 (1.13 to 1.23) 4.2� 10�15 1587 1.22 (1.14 to 1.31) 8.5� 10�5

50–59 846 1.14 (1.09 to 1.21) .40 718 1.10 (1.02 to 1.19) .05
�60 269 1.20 (1.11 to 1.29) .33 294 1.12 (1.03 to 1.23) .75
Interaction HR 0.993 (0.990 to 0.996) 3.3� 10�6 0.995 (0.991 to 0.999) .01
Main effect PRS 1.69 (1.50 to 1.91) 1.55 (1.29 to 1.87)

Outcome: ovarian cancer
18–49 1258 1.55 (1.42 to 1.69) 172 3.05 (2.35 to 3.97)
50–59 808 1.11 (1.05 to 1.18) 1.1� 10�9 227 1.52 (1.26 to 1.84) 8.2� 10�6

�60 396 1.14 (1.06 to 1.21) .67 232 1.21 (1.12 to 1.30) .03
Interaction HR 0.992 (0.988 to 0.998) .003 0.991 (0.979 to 1.00) .11
Main effect PRS 1.83 (1.43 to 2.34) 2.48 (1.34 to 4.58)

*The population-derived polygenic risk score (PRS) for estrogen receptor–negative breast cancer was used for the associations with breast cancer in BRCA1 carriers and

the overall breast cancer PRS in BRCA2 carriers. P values relate to the difference in PRS association between each age group from the preceding younger group and to

the interaction term. CI ¼ confidence interval; HR ¼ hazard ratio; PRS ¼ polygenic risk score.

†P value for a two-sided test using a weighted cohort Cox regression with time to breast or ovarian cancer diagnosis, respectively, as the outcome.
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differences are much greater than those found in population-
based studies (20,37) because the average risks conferred by
BRCA1 and BRCA2 mutations are already high (17,18). The clin-
ical management of healthy women with a BRCA1 or BRCA2 mu-
tation involves a combination of frequent screening, risk-
reducing surgery, and possibly chemoprevention (1), which can
associated with substantial side effects. In particular, RRSO
leads to premature menopause, is associated with increased
morbidity, and has implications for family planning (38,39).
Therefore, the timing of RRSO has to be carefully considered.
There are no widely accepted risk thresholds for RRSO in muta-
tion carriers: RRSO is recommended to all carriers on the basis
of their average risk. The current National Comprehensive
Cancer Network guidelines recommend RRSO for BRCA1 carriers

at age 35 to 40 years and BRCA2 carriers at age 40 to 45 years
(40). The average cumulative risk of ovarian cancer by age 40
years for BRCA1 mutation carriers has been estimated as 2.8%
(41). However, on the basis of our analyses, the cumulative risk
of ovarian cancer for those at the lowest 1% of the PRS by age 40
years is predicted to be 0.7%, and 20% of BRCA1 mutation car-
riers are predicted to have a risk of ovarian cancer of less than
1.3% by age 40 years. Therefore, the current results may be used
to develop risk-based thresholds for RRSO recommendations.
One possibility would be to assume that women with BRCA1
mutations would not be offered RRSO until their cumulative
risk of ovarian cancer approaches or exceeds 2.8%. A similar
rule has recently been recommended for the counseling of
women with mutations in moderate-risk genes (42). The ages at
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Figure 2. Predicted breast cancer risks by percentile of the polygenic risk scores (PRSs). The estrogen receptor–negative breast cancer PRS was used for BRCA1 carriers

(A) and the overall breast cancer PRS for BRCA2 carriers (C). Ovarian cancer risks are given by percentile of the ovarian cancer PRS in BRCA1 (B) and BRCA2 (D) carriers.

Age-specific PRS associations were used to calculate these cumulative risks.
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which women with BRCA1 mutations would reach a cumulative
risk of ovarian cancer of 2.8% are 48 years for those at the 1st
percentile of the PRS, and 46, 45, 44, and 43 years for those at
the 5th, 10th, 20th, and 30th percentiles of the PRS, respectively.
For these women, deferring oophorectomy to these ages as
opposed to the recommended age of 35 to 40 years may be pref-
erable for childbearing and to avoid very early menopause.
Another option would be to use risk-based thresholds defined
for the general population. For example, a 10% lifetime risk of
ovarian cancer is often cited as a recommended threshold for
RRSO (43). Based on our results, BRCA2 carriers at the 10th per-
centile of the ovarian cancer PRS have an estimated 6% lifetime
risk and approximately 38% of BRCA2 mutation carriers have a
lifetime risk of ovarian cancer that is less than 10%. Women at
this lower end of the risk spectrum might opt to delay RRSO to
near or after natural menopause in order to avoid the harmful
longer-term adverse effects of a surgically induced premature
menopause, and this also provides a longer period for childbear-
ing. Therefore, the PRS may be informative in guiding women
with BRCA1 and BRCA2 mutations on the optimal timing of
RRSO and can identify women at lower risk who may opt for
less intensive interventions, such as salpingectomy with
delayed oophorectomy.

Decisions in relation to breast cancer prevention could also
be influenced by refined risk estimates. For example, the BRCA1
carriers at the 90th percentile of the ER-negative breast cancer
PRS had an estimated breast cancer risk of 19% by age 40 years
and 39% by age 50 years, compared with 5% by age 40 years and
21% by age 50 years for carriers at the 10th percentile of the PRS.
As with RRSO, there are currently no widely accepted risk
thresholds for offering risk-reducing bilateral mastectomy
(RRBM) for women with BRCA1 and BRCA2 mutations. However,
studies in nonmutation carriers have shown that the uptake
and timing of RRBM is directly related to the magnitude of
breast cancer risk (44), and similar arguments may be applicable
to mutation carriers. To provide comprehensive risk prediction,
the PRS should be combined with other risk factors, including
family history. Such a model would form the foundation for the
development of risk-based clinical management guidelines for
mutation carriers. In parallel, it will be necessary to perform
risk communication studies to assess the acceptability of risk
stratification in women with BRCA1 and BRCA2 mutations.

In conclusion, the results demonstrate that these PRSs could
be useful in risk prediction for mutation carriers. Incorporating
these PRSs into risk prediction models for BRCA1 and BRCA2
mutation carriers, together with other risk modifiers, may allow
for more personalized risks for BRCA1 and BRCA2 mutation car-
riers and ultimately facilitate better management of mutation
carriers.
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Jacek Gronwald, Anna Jakubowska, Katarzyna Kaczmarek, Jan
Lubinski, Grzegorz Sukiennicki, Rosa B. Barkardottir, Jocelyne
Chiquette, Simona Agata, Marco Montagna, Manuel R. Teixeira,
KConFab Investigators, Sue Kyung Park, Curtis Olswold, Marc
Tischkowitz, Lenka Foretova, Pragna Gaddam, Joseph Vijai,
Georg Pfeiler, Christine Rappaport-Fuerhauser, Christian F.
Singer, Muy-Kheng M. Tea, Mark H. Greene, Jennifer T. Loud,

Gad Rennert, Evgeny N. Imyanitov, Peter J. Hulick, John L. Hays,
Marion Piedmonte, Gustavo C. Rodriguez, Julie Martyn, Gord
Glendon, Anna Marie Mulligan, Irene L. Andrulis, Amanda
Ewart Toland, Uffe Birk Jensen, Torben A. Kruse, Inge Sokilde
Pedersen, Mads Thomassen, Maria A. Caligo, Soo-Hwang Teo,
Raanan Berger, Eitan Friedman, Yael Laitman, Brita Arver, Ake
Borg, Hans Ehrencrona, Johanna Rantala, Olufunmilayo I.
Olopade, Patricia A. Ganz, Robert L. Nussbaum, Angela R.
Bradbury, Susan M. Domchek, Katherine L. Nathanson, Banu K.
Arun, Paul James, Beth Y. Karlan, Jenny Lester, Jacques Simard,
Paul D. P. Pharoah, Kenneth Offit, Fergus J. Couch, Georgia
Chenevix-Trench, Douglas F. Easton, Antonis C. Antoniou

Affiliations of authors: The Wellcome Trust Sanger Institute,
Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
(KBK); Department of Public Health and Primary Care,
University of Cambridge, Cambridge, UK (KBK, LM, DB, AL, JD,
ML, NM, DFE, ACA); Genomics Center, Centre Hospitalier
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