1,991 research outputs found

    Widespread Layers in Arabia Terra: Implications for Martian Geologic History

    Get PDF
    Layered rocks in Arabia Terra have been the focus of several recent papers. Studies have focused on the layers found in crater basins located in the southwest portion of the region. However, Mars Orbiter Camera (MOC) images have identified layered deposits across the region. Terrestrial layered rocks are usually sedimentary, and often deposited in water. Thus extensive layered sequences in Arabia Terra may indicate locations of past, major depositional basins on Mars. Other mechanisms can also create layered rocks, or the appearance of layered rocks, including volcanism (both lava flows and ash falls), wind-blown deposits, and wave-cut terraces at shorelines. By identifying where in the region layers occur, and classifying the layers according to morphology and albedo, past depositional environments may be identified. Arabia Terra is characterized by heavily cratered Noachian plains, as well as a rise from -4000 m in the northwest to 4000 m in the southeast (Mars Orbital Laser Altimeter [MOLA] datum). This slope may have provided a constraint on sediment deposition and thus layer formation. While most of the region is Noachian in age, a significant percentage of the area is identified as Hesperian. Although the history of the Arabia Terra initially seems to be straightforward cratered plains with several younger units atop them analysis of high-resolution imagery may reveal a more complex history

    Rover Exploration of Acidalia Mensa and Acidalia Planitia: Probing Mud Volcanoes to Sample Buried Sediments and Search for Ancient and Extant Life

    Get PDF
    Here we develop a plan to explore mud volcanoes near Acidalia Mensa with an MSL-class rover and propose a traverse based on geologic observations

    Regional Mapping and Spectral Analysis of Mounds in Acidalia Planitia, Mars

    Get PDF
    Acidalia Planitia is a approx.3000 km diameter planum located in the northern plains of Mars. It is believed to be a sedimentary basin containing an accumulation of sediments brought by Hesperian outflow channels that drained the Highlands. A large number of high-albedo mounds have been identified across this basin [1-2] and understanding the process that formed them should help us understand the history of this region. Farrand et al. [2] showed that the mounds are dark in THEMIS (Thermal Emission Imaging System) nighttime IR (infrared) image data. This implies that the mounds have a lower thermal inertia than the surrounding plains (Fig. 1), suggesting that the material of the mounds is fine-grained or unconsolidated. Farrand et al. [2] also reviewed potential analogs for the mounds and concluded that a combination of mud volcanoes with evaporites around geysers or springs is most consistent with all the data. We have built on this work by creating regional maps of the features and analyzing CRISM (Compact Reconnaissance Imaging Spectrometer for Mars) data to see if there are mineralogical differences between the mounds and surrounding plains

    Candidate Landing Site for the Mars Science Laboratory: Vernal Crater, S.W. ARabia Terra

    Get PDF
    In the fall of 2009, the Mars Science Laboratory (MSL) will be launched to Mars. The purpose of this mission is to assess biologic potential and geology and to investigate planetary processes of relevance to past habitability. MSL will be able to provide visual, chemical, radiation, and environmental data with its suite of instruments [1]. In order to be selected for the MSL landing site, certain engineering requirements must be met [1] and the area should contain geologic features suggestive of past habitability, so that the overriding science goal of the mission will be attained. There are a total of 33 proposed landing sites as of the first MSL Landing Site Workshop held in Pasadena, CA from May 31st to June 2nd, 2006 [1]. There will be an opportunity to gather high resolution visual and hyperspectral data on all proposed landing sites from the now-orbiting Mars Reconnaissance Orbiter (MRO) which entered martian orbit and began its main science phase in November of 2006 [2]. The data being gathered are from: the high resolution imaging science experiment (HiRISE), the context (CTX) camera and the compact reconnaissance imaging spectrometer (CRISM) onboard the spacecraft. The footprints of these instruments are centered on a single point, and each proposer must submit these coordinates, along with the coordinates of the proposed landing ellipse. Data from these instruments, along with new MOC images and THEMIS mosaics, will be used to enhance our understanding of the geologic and engineering parameters of each site

    'Nano' Morphology and Element Signatures of Early Life on Earth: A New Tool for Assessing Biogenicity

    Get PDF
    The relatively young technology of NanoSIMS is unlocking an exciting new level of information from organic matter in ancient sediments. We are using this technique to characterize Proterozoic organic material that is clearly biogenic as a guide for interpreting controversial organic structures in either terrestrial or extraterrestrial samples. NanoSIMS is secondary ion mass spectrometry for trace element and isotope analysis at sub-micron resolution. In 2005, Robert et al. [1] combined NanoSIMS element maps with optical microscopic imagery in an effort to develop a new method for assessing biogenicity of Precambrian structures. The ability of NanoSIMS to map simultaneously the distribution of organic elements with a 50 nm spatial resolution provides new biologic markers that could help define the timing of life s development on Earth. The current study corroborates the work of Robert et al. and builds on their study by using NanoSIMS to map C, N (as CN), S, Si and O of both excellently preserved microfossils and less well preserved, non-descript organics in Proterozoic chert from the ca. 0.8 Ga Bitter Springs Formation of Australia

    The vascular bone marrow niche influences outcome in chronic myeloid leukemia via the E-selectin - SCL/TAL1-CD44 axis.

    No full text
    The endosteal bone marrow niche and vascular endothelial cells provide sanctuaries for leukemic cells. In murine chronic myeloid leukemia (CML) CD44 on leukemia cells and E-selectin on bone marrow endothelium are essential mediators for the engraftment of leukemic stem cells. We hypothesized that non-adhesion of CML-initiating cells to E-selectin on the bone marrow endothelium may lead to superior eradication of leukemic stem cells in CML after treatment with imatinib than imatinib alone. Indeed, here we show that treatment with the E-selectin inhibitor GMI-1271 in combination with imatinib prolongs survival of mice with CML via decreased contact time of leukemia cells with bone marrow endothelium. Non-adhesion of BCR-ABL1(+) cells leads to an increase of cell cycle progression and an increase of expression of the hematopoietic transcription factor and proto-oncogene Scl/Tal1 in leukemia-initiating cells. We implicate SCL/TAL1 as an indirect phosphorylation target of BCR-ABL1 and as a negative transcriptional regulator of CD44 expression. We show that increased SCL/TAL1 expression is associated with improved outcome in human CML. These data demonstrate the BCR-ABL1-specific, cell-intrinsic pathways leading to altered interactions with the vascular niche via the modulation of adhesion molecules - which could be exploited therapeutically in the future

    Virtual Electrode Design for Lithium-Ion Battery Cathodes

    Get PDF
    Microstructural characteristics of lithium‐ion battery cathodes determine their performance. Thus, modern simulation tools are increasingly important for the custom design of multiphase cathodes. This work presents a new method for generating virtual, yet realistic cathode microstructures. A precondition is a 3D template of a commercial cathode, reconstructed via focused ion beam/scanning electron microscopy (FIB/SEM) tomography and appropriate algorithms. The characteristically shaped micrometer‐sized active material (AM) particles and agglomerates of nano‐sized carbon‐binder (CB) particles are individually extracted from the voxel‐based templates. Thereby, a library of roughly 1100 AM particles and 20 CB agglomerates is created. Next, a virtual cathode microstructure is predefined, and representative sets of AM particles and CB agglomerates are built. The following re‐assembly of AM particles within a predefined volume box works using dropping and rolling algorithms. Thereby, one can generate cathodes with specified characteristics, such as the volume fraction of AM, CB and pore space, particle‐size distributions, and gradients thereof. Naturally, such a virtual twin is a promising starting point for physics‐based electrochemical performance models. The workflow from the commercial cathode microstructure through to a full virtual twin will be explained and assessed for a blend cathode made of the two AMs, LiNiCoAlO2_{2} (NCA) and LiCoO2_{2} (LCO)

    Layered Sediments, Rampart Craters, and Potential Fluvio-Lacustrine Activity in S.W. Arabia Terra, Mars: Support for a History of Aqueous Conditions

    Get PDF
    Arabia Terra is a unique area on Mars in that it is the only major, equatorial region characterized by high abundances of near-surface water (as measured by gamma ray and neutron spectroscopy). Vernal Crater is a 55 km-diameter structure in southwest Arabia Terra, centered at 6 N, 355.5 E. The crater includes layered sediments, potential remnants of fluvio-lacustrine activity, and indications of aeolian processes. Regional considerations, along with new THEMIS and MOC data, are being assessed to gain insight into the significance of the geomorphic units within Vernal Crater and the geologic history of SW Arabia Terra

    Diversification in the Archean Biosphere: Insight from NanoSIMS of Microstructures in the Farrel Quartzite of Australia

    Get PDF
    The nature of early life on Earth is difficult to assess because potential Early Archean biosignatures are commonly poorly preserved. Interpretations of such materials have been contested, and abiotic or epigenetic derivations have been proposed (summarized in [1]). Yet, an understanding of Archean life is of astrobiological importance, as knowledge of early evolutionary processes on Earth could provide insight to development of life on other planets. A recently-discovered assemblage of organic microstructures in approx.3 Ga charts of the Farrel Quartzite (FQ) of Australia [2-4] includes unusual spindle-like forms and a variety of spheroids. If biogenicity and syngeneity of these forms could be substantiated, the FQ assemblage would provide a new view of Archean life. Our work uses NanoSIMS to further assess the biogenicity and syngeneity of FQ microstructures. In prior NanoSIMS studies [5-6], we gained an understanding of nano-scale elemental distributions in undisputed microfossils from the Neoproterozoic Bitter Springs Formation of Australia. Those results provide a new tool with which to evaluate poorly preserved materials that we might find in Archean sediments and possibly in extraterrestrial materials. We have applied this tool to the FQ forms
    corecore