1,018 research outputs found

    Effect of impurities on the transition between minority ion and mode conversion ICRH heating in (3He)-H tokamak plasmas

    Get PDF
    Hydrogen majority plasmas will be used in the initial non-activated phase of ITER operation. Optimizing ion cyclotron resonance heating (ICRH) in such scenarios will help in achieving H-mode in these plasmas. Past JET experiments with the carbon wall revealed a significant impact of intrinsic impurities on the ICRH performance in (3He)-H plasmas relevant for the full-field initial ITER phase. High plasma contamination with carbon impurities resulted in the appearance of a supplementary mode conversion layer and significant reduction in the transition concentration of 3He minority ions, defined as the concentration at which the change from minority heating to mode conversion regime occurs. In view of the installation of the new ITER-like wall at JET, it is important to evaluate the effect of Be and W impurities on ICRH scenarios in (3He)-H plasmas. In this paper, an approximate analytical expression for the transition concentration of 3He minority ions is derived as a function of plasma and ICRH parameters, and accounting for typical impurity species at JET. The accompanying 1D wave modeling supports the analytical results and suggests a potential experimental method to reduce 3He level needed to achieve a specific heating regime by puffing a small amount of 4He ions additionally to (3He)-H plasma.Comment: 23 pages, 9 figure

    Temperature dependent anisotropy of the penetration depth and coherence length in MgB$_2

    Full text link
    We report measurements of the temperature dependent anisotropies (γλ\gamma_\lambda and γξ\gamma_\xi) of both the London penetration depth λ\lambda and the upper critical field of MgB2_2. Data for γλ=λc/λa\gamma_\lambda=\lambda_c/\lambda_a was obtained from measurements of λa\lambda_{a} and λc\lambda_c on a single crystal sample using a tunnel diode oscillator technique. γξ=Hc2c/Hc2c\gamma_\xi=H_{c2}^{\parallel c}/H_{c2}^{\bot c} was deduced from field dependent specific heat measurements on the same sample. γλ\gamma_\lambda and γξ\gamma_\xi have opposite temperature dependencies, but close to TcT_c tend to a common value (γλγξ=1.75±0.05\gamma_\lambda\simeq \gamma_\xi=1.75\pm0.05). These results are in good agreement with theories accounting for the two gap nature of MgB2_2Comment: 4 pages with figures (New version

    de Haas-van Alphen effect investigation of the electronic structure of Al substituted MgB_2

    Full text link
    We report a de Haas-van Alphen (dHvA) study of the electronic structure of Al doped crystals of MgB2_2. We have measured crystals with 7.5\sim 7.5% Al which have a TcT_c of 33.6 K, (14\sim 14% lower than pure MgB2_2). dHvA frequencies for the σ\sigma tube orbits in the doped samples are lower than in pure MgB2_2, implying a 16±216\pm2% reduction in the number of holes in this sheet of Fermi surface. The mass of the quasiparticles on the larger σ\sigma orbit is lighter than the pure case indicating a reduction in electron-phonon coupling constant λ\lambda. These observations are compared with band structure calculations, and found to be in excellent agreement.Comment: 4 pages with figure

    Generalized Penner models to all genera

    Full text link
    We give a complete description of the genus expansion of the one-cut solution to the generalized Penner model. The solution is presented in a form which allows us in a very straightforward manner to localize critical points and to investigate the scaling behaviour of the model in the vicinity of these points. We carry out an analysis of the critical behaviour to all genera addressing all types of multi-critical points. In certain regions of the coupling constant space the model must be defined via analytical continuation. We show in detail how this works for the Penner model. Using analytical continuation it is possible to reach the fermionic 1-matrix model. We show that the critical points of the fermionic 1-matrix model can be indexed by an integer, mm, as it was the case for the ordinary hermitian 1-matrix model. Furthermore the mm'th multi-critical fermionic model has to all genera the same value of γstr\gamma_{str} as the mm'th multi-critical hermitian model. However, the coefficients of the topological expansion need not be the same in the two cases. We show explicitly how it is possible with a fermionic matrix model to reach a m=2m=2 multi-critical point for which the topological expansion has alternating signs, but otherwise coincides with the usual Painlev\'{e} expansion.Comment: 27 pages, PostScrip

    Renormalizations in softly broken N=1 theories: Slavnov-Taylor identities

    Get PDF
    Slavnov-Taylor identities have been applied to perform explicitly the renormalization procedure for the softly broken N=1 SYM. The result is in accordance with the previous results obtained at the level of supergraph technique.Comment: Latex, 17 pages, one statement about soft gauge beta function has been change

    The first data on the infestation of the parti-coloured bat, Vespertilio murinus (Chiroptera, Vespertilionidae), with gamasid mites, Steatonyssus spinosus (Mesostigmata, Gamasina, Macronyssidae)

    Get PDF
    This article presents one of the very few records of a macronyssid mite (Mesostigmata, Gamasina, Macronyssidae) infestation of vesper bats (Chiroptera, Vespertilionidae). It is the first report of the influence of host parameters on the infestation of the parti-coloured bat, Vespertilio murinus, by the mite Steatonyssus spinosus. It has been shown that the infestation varies considerably throughout the host's occupation of summer roosts and the highest infestation was observed in the post-lactation period. Female bats are infested significantly more intensively than male bats due to changes in their immune status during pregnancy and lactation. The infestation decreases in the period when the breeding colony disbands due to both roost switching and the intensification of grooming during this period. © Russian Journal Of Theriology, 2017

    A Review of Symmetry Algebras of Quantum Matrix Models in the Large-N Limit

    Full text link
    This is a review article in which we will introduce, in a unifying fashion and with more intermediate steps in some difficult calculations, two infinite-dimensional Lie algebras of quantum matrix models, one for the open string sector and one for the closed string sector. Physical observables of quantum matrix models in the large-N limit can be expressed as elements of these Lie algebras. We will see that both algebras arise as quotient algebras of a larger Lie algebra. We will also discuss some properties of these Lie algebras not published elsewhere yet, and briefly review their relationship with well-known algebras like the Cuntz algebra, the Witt algebra and the Virasoro algebra. We will also review how Yang--Mills theory, various low energy effective models of string theory, quantum gravity, string-bit models, and quantum spin chain models can be formulated as quantum matrix models. Studying these algebras thus help us understand the common symmetry of these physical systems.Comment: 77 pages, 21 eps figures, 1 table, LaTeX2.09; an invited review articl
    corecore