46 research outputs found
Infrastructure for Detector Research and Development towards the International Linear Collider
The EUDET-project was launched to create an infrastructure for developing and
testing new and advanced detector technologies to be used at a future linear
collider. The aim was to make possible experimentation and analysis of data for
institutes, which otherwise could not be realized due to lack of resources. The
infrastructure comprised an analysis and software network, and instrumentation
infrastructures for tracking detectors as well as for calorimetry.Comment: 54 pages, 48 picture
A simple rule to determine which insolation cycles lead to interglacials
The pacing of glacialâinterglacial cycles during the Quaternary period (the past 2.6 million years) is attributed to astronomically driven changes in high-latitude insolation. However, it has not been clear how astronomical forcing translates into the observed sequence of interglacials. Here we show that before one million years ago interglacials occurred when the energy related to summer insolation exceeded a simple threshold, about every 41,000 years. Over the past one million years, fewer of these insolation peaks resulted in deglaciation (that is, more insolation peaks were âskippedâ), implying that the energy threshold for deglaciation had risen, which led to longer glacials. However, as a glacial lengthens, the energy needed for deglaciation decreases. A statistical model that combines these observations correctly predicts every complete deglaciation of the past million years and shows that the sequence of interglacials that has occurred is one of a small set of possibilities. The model accounts for the dominance of obliquity-paced glacialâinterglacial cycles early in the Quaternary and for the change in their frequency about one million years ago. We propose that the appearance of larger ice sheets over the past million years was a consequence of an increase in the deglaciation threshold and in the number of skipped insolation peaks.P.C.T. acknowledges funding from a Leverhulme Trust Research Project Grant (RPG-2014-417). M.C. and T.M. acknowledge support from the Belgian Policy Office under contract BR/121/A2/STOCHCLIM. E.W.W. is funded under a Royal Society Research Professorship and M.C. is a senior research scientist with the Belgian National Fund of Scientific Research
Volume and extent of the Minoan tephra from Santorini Volcano: New evidence from deep-sea sediment cores
Analyses of tephra in abyssal piston cores collected during cruises of R/V Trident show that the Minoan eruption produced at least 28 km3 of tephra (13 km3 dense rock equivalent). A layer up to 5 cm thick must have been deposited on eastern Crete. © 1978 Nature Publishing Group