984 research outputs found

    Origin of the peculiar eccentricity distribution of the inner cold Kuiper belt

    Full text link
    Dawson and Murray-Clay (2012) pointed out that the inner part of the cold population in the Kuiper belt (that with semi major axis a<43.5 AU) has orbital eccentricities significantly smaller than the limit imposed by stability constraints. Here, we confirm their result by looking at the orbital distribution and stability properties in proper element space. We show that the observed distribution could have been produced by the slow sweeping of the 4/7 mean motion resonance with Neptune that accompanied the end of Neptune's migration process. The orbital distribution of the hot Kuiper belt is not significantly affected in this process, for the reasons discussed in the main text. Therefore, the peculiar eccentricity distribution of the inner cold population can not be unequivocally interpreted as evidence that the cold population formed in-situ and was only moderately excited in eccentricity; it can simply be the signature of Neptune's radial motion, starting from a moderately eccentric orbit. We discuss how this agrees with a scenario of giant planet evolution following a dynamical instability and, possibly, with the radial transport of the cold population.Comment: in press in Icaru

    Did the Hilda collisional family form during the late heavy bombardment?

    Full text link
    We model the long-term evolution of the Hilda collisional family located in the 3/2 mean-motion resonance with Jupiter. Its eccentricity distribution evolves mostly due to the Yarkovsky/YORP effect and assuming that: (i) impact disruption was isotropic, and (ii) albedo distribution of small asteroids is the same as for large ones, we can estimate the age of the Hilda family to be 41+0Gyr4_{-1}^{+0}\,{\rm Gyr}. We also calculate collisional activity in the J3/2 region. Our results indicate that current collisional rates are very low for a 200\,km parent body such that the number of expected events over Gyrs is much smaller than one. The large age and the low probability of the collisional disruption lead us to the conclusion that the Hilda family might have been created during the Late Heavy Bombardment when the collisions were much more frequent. The Hilda family may thus serve as a test of orbital behavior of planets during the LHB. We tested the influence of the giant-planet migration on the distribution of the family members. The scenarios that are consistent with the observed Hilda family are those with fast migration time scales 0.3Myr\simeq 0.3\,{\rm Myr} to 3Myr3\,{\rm Myr}, because longer time scales produce a family that is depleted and too much spread in eccentricity. Moreover, there is an indication that Jupiter and Saturn were no longer in a compact configuration (with period ratio PS/PJ>2.09P_{\rm S}/P_{\rm J} > 2.09) at the time when the Hilda family was created

    Constraining the cometary flux through the asteroid belt during the late heavy bombardment

    Full text link
    In the Nice model, the late heavy bombardment (LHB) is related to an orbital instability of giant planets which causes a fast dynamical dispersion of a transneptunian cometary disk. We study effects produced by these hypothetical cometary projectiles on main-belt asteroids. In particular, we want to check whether the observed collisional families provide a lower or an upper limit for the cometary flux during the LHB. We present an updated list of observed asteroid families as identified in the space of synthetic proper elements by the hierarchical clustering method, colour data, albedo data and dynamical considerations and we estimate their physical parameters. We selected 12 families which may be related to the LHB according to their dynamical ages. We then used collisional models and N-body orbital simulations to gain insight into the long-term dynamical evolution of synthetic LHB families over 4 Gyr. We account for the mutual collisions, the physical disruptions of comets, the Yarkovsky/YORP drift, chaotic diffusion, or possible perturbations by the giant-planet migration. Assuming a "standard" size-frequency distribution of primordial comets, we predict the number of families with parent-body sizes D_PB >= 200 km which seems consistent with observations. However, more than 100 asteroid families with D_PB >= 100 km should be created at the same time which are not observed. This discrepancy can be nevertheless explained by the following processes: i) asteroid families are efficiently destroyed by comminution (via collisional cascade), ii) disruptions of comets below some critical perihelion distance (q <~ 1.5 AU) are common. Given the freedom in the cometary-disruption law, we cannot provide stringent limits on the cometary flux, but we can conclude that the observed distribution of asteroid families does not contradict with a cometary LHB.Comment: accepted in Astronomy and Astrophysic

    A new perspective on the irregular satellites of Saturn - I Dynamical and collisional history

    Full text link
    The dynamical features of the irregular satellites of the giant planets argue against an in-situ formation and are strongly suggestive of a capture origin. Since the last detailed investigations of their dynamics, the total number of satellites have doubled, increasing from 50 to 109, and almost tripled in the case of Saturn system. We have performed a new dynamical exploration of Saturn system to test whether the larger sample of bodies could improve our understanding of which dynamical features are primordial and which are the outcome of the secular evolution of the system. We have performed detailed N--Body simulations using the best orbital data available and analysed the frequencies of motion to search for resonances and other possible perturbing effects. We took advantage of the Hierarchical Jacobian Symplectic algorithm to include in the dynamical model of the system also the gravitational effects of the two outermost massive satellites, Titan and Iapetus. Our results suggest that Saturn's irregular satellites have been significantly altered and shaped by the gravitational perturbations of Jupiter, Titan, Iapetus and the Sun and by the collisional sweeping effect of Phoebe. In particular, the effects on the dynamical evolution of the system of the two massive satellites appear to be non-negligible. Jupiter perturbs the satellites through its direct gravitational pull and, indirectly, via the effects of the Great Inequality, i.e. its almost resonance with Saturn. Finally, by using the Hierarchical Clustering Method we found hints to the existence of collisional families and compared them with the available observational data.Comment: 26 Pages, 27 Figures, 4 Table

    On the relationship between instability and Lyapunov times for the 3-body problem

    Full text link
    In this study we consider the relationship between the survival time and the Lyapunov time for 3-body systems. It is shown that the Sitnikov problem exhibits a two-part power law relationship as demonstrated previously for the general 3-body problem. Using an approximate Poincare map on an appropriate surface of section, we delineate escape regions in a domain of initial conditions and use these regions to analytically obtain a new functional relationship between the Lyapunov time and the survival time for the 3-body problem. The marginal probability distributions of the Lyapunov and survival times are discussed and we show that the probability density function of Lyapunov times for the Sitnikov problem is similar to that for the general 3-body problem.Comment: 9 pages, 19 figures, accepted for publication in MNRA

    Massive planet migration: Theoretical predictions and comparison with observations

    Full text link
    We quantify the utility of large radial velocity surveys for constraining theoretical models of Type II migration and protoplanetary disk physics. We describe a theoretical model for the expected radial distribution of extrasolar planets that combines an analytic description of migration with an empirically calibrated disk model. The disk model includes viscous evolution and mass loss via photoevaporation. Comparing the predicted distribution to a uniformly selected subsample of planets from the Lick / Keck / AAT planet search programs, we find that a simple model in which planets form in the outer disk at a uniform rate, migrate inward according to a standard Type II prescription, and become stranded when the gas disk is dispersed, is consistent with the radial distribution of planets for orbital radii 0.1 AU < a < 2.5 AU and planet masses greater than 1.65 Jupiter masses. Some variant models are disfavored by existing data, but the significance is limited (~95%) due to the small sample of planets suitable for statistical analysis. We show that the favored model predicts that the planetary mass function should be almost independent of orbital radius at distances where migration dominates the massive planet population. We also study how the radial distribution of planets depends upon the adopted disk model. We find that the distribution can constrain not only changes in the power-law index of the disk viscosity, but also sharp jumps in the efficiency of angular momentum transport that might occur at small radii.Comment: ApJ, in press. References updated to match published versio

    The three-body problem and the Hannay angle

    Full text link
    The Hannay angle has been previously studied for a celestial circular restricted three-body system by means of an adiabatic approach. In the present work, three main results are obtained. Firstly, a formal connection between perturbation theory and the Hamiltonian adiabatic approach shows that both lead to the Hannay angle; it is thus emphasised that this effect is already contained in classical celestial mechanics, although not yet defined nor evaluated separately. Secondly, a more general expression of the Hannay angle, valid for an action-dependent potential is given; such a generalised expression takes into account that the restricted three-body problem is a time-dependent, two degrees of freedom problem even when restricted to the circular motion of the test body. Consequently, (some of) the eccentricity terms cannot be neglected {\it a priori}. Thirdly, we present a new numerical estimate for the Earth adiabatically driven by Jupiter. We also point out errors in a previous derivation of the Hannay angle for the circular restricted three-body problem, with an action-independent potential.Comment: 11 pages. Accepted by Nonlinearit

    On the connection between the Nekhoroshev theorem and Arnold Diffusion

    Full text link
    The analytical techniques of the Nekhoroshev theorem are used to provide estimates on the coefficient of Arnold diffusion along a particular resonance in the Hamiltonian model of Froeschl\'{e} et al. (2000). A resonant normal form is constructed by a computer program and the size of its remainder Ropt||R_{opt}|| at the optimal order of normalization is calculated as a function of the small parameter ϵ\epsilon. We find that the diffusion coefficient scales as DRopt3D\propto||R_{opt}||^3, while the size of the optimal remainder scales as Roptexp(1/ϵ0.21)||R_{opt}|| \propto\exp(1/\epsilon^{0.21}) in the range 104ϵ10210^{-4}\leq\epsilon \leq 10^{-2}. A comparison is made with the numerical results of Lega et al. (2003) in the same model.Comment: Accepted in Celestial Mechanics and Dynamical Astronom
    corecore