3,789 research outputs found
Design definition of a mechanical capacitor
A design study and analyses of a 10 kW-hr, 15 kW mechanical capacitor system was studied. It was determined that magnetically supported wheels constructed of advanced composites have the potential for high energy density and high power density. Structural concepts are analyzed that yield the highest energy density of any structural design yet reported. Particular attention was paid to the problem of 'friction' caused by magnetic and I to the second power R losses in the suspension and motor-generator subsystems, and low design friction levels have been achieved. The potentially long shelf life of this system, and the absence of wearing parts, provide superior performance over conventional flywheels supported with mechanical bearings. Costs and economies of energy storage wheels were reviewed briefly
Scale-Free topologies and Activatory-Inhibitory interactions
A simple model of activatory-inhibitory interactions controlling the activity
of agents (substrates) through a "saturated response" dynamical rule in a
scale-free network is thoroughly studied. After discussing the most remarkable
dynamical features of the model, namely fragmentation and multistability, we
present a characterization of the temporal (periodic and chaotic) fluctuations
of the quasi-stasis asymptotic states of network activity. The double (both
structural and dynamical) source of entangled complexity of the system temporal
fluctuations, as an important partial aspect of the Correlation
Structure-Function problem, is further discussed to the light of the numerical
results, with a view on potential applications of these general results.Comment: Revtex style, 12 pages and 12 figures. Enlarged manuscript with major
revision and new results incorporated. To appear in Chaos (2006
Dynamics of gene expression and the regulatory inference problem
From the response to external stimuli to cell division and death, the
dynamics of living cells is based on the expression of specific genes at
specific times. The decision when to express a gene is implemented by the
binding and unbinding of transcription factor molecules to regulatory DNA.
Here, we construct stochastic models of gene expression dynamics and test them
on experimental time-series data of messenger-RNA concentrations. The models
are used to infer biophysical parameters of gene transcription, including the
statistics of transcription factor-DNA binding and the target genes controlled
by a given transcription factor.Comment: revised version to appear in Europhys. Lett., new titl
Hamiltonian type Lie bialgebras
We first prove that, for any generalized Hamiltonian type Lie algebra ,
the first cohomology group is trivial. We then show that
all Lie bialgebra structures on are triangular.Comment: LaTeX, 16 page
Toward an ecological aesthetics: music as emergence
In this article we intend to suggest some ecological based principles
to support the possibility of develop an ecological aesthetics. We consider that
an ecological aesthetics is founded in concepts as “direct perception”,
“acquisition of affordances and invariants”, “embodied embedded
perception” and so on. Here we will purpose that can be possible explain
especially soundscape music perception in terms of direct perception, working
with perception of first hand (in a Gibsonian sense). We will present notions
as embedded sound, detection of sonic affordances and invariants, and at the
end we purpose an experience with perception/action paradigm to make
soundscape music as emergence of a self-organized system
Lie bialgebras of generalized Witt type
In a paper by Michaelis a class of infinite-dimensional Lie bialgebras
containing the Virasoro algebra was presented. This type of Lie bialgebras was
classified by Ng and Taft. In this paper, all Lie bialgebra structures on the
Lie algebras of generalized Witt type are classified. It is proved that, for
any Lie algebra of generalized Witt type, all Lie bialgebras on are
coboundary triangular Lie bialgebras. As a by-product, it is also proved that
the first cohomology group is trivial.Comment: 14 page
Electrostatic control of quantum dot entanglement induced by coupling to external reservoirs
We propose a quantum transport experiment to prepare and measure
charge-entanglement between two electrostatically defined quantum dots.
Coherent population trapping, as realized in cavity quantum electrodynamics,
can be carried out by using a third quantum dot to play the role of the optical
cavity. In our proposal, a pumping which is quantum mechanically
indistinguishable for the quantum dots drives the system into a state with a
high degree of entanglement. The whole effect can be switched on and off by
means of a gate potential allowing both state preparation and entanglement
detection by simply measuring the total current.Comment: 5 pages, 4 figures, Latex2e with EPL macros, to appear in Europhysics
Letter
Theory of electronic transport through a triple quantum dot in the presence of magnetic field
Theory of electronic transport through a triangular triple quantum dot
subject to a perpendicular magnetic field is developed using a tight binding
model. We show that magnetic field allows to engineer degeneracies in the
triple quantum dot energy spectrum. The degeneracies lead to zero electronic
transmission and sharp dips in the current whenever a pair of degenerate states
lies between the chemical potential of the two leads. These dips can occur with
a periodicity of one flux quantum if only two levels contribute to the current
or with half flux quantum if the three levels of the triple dot contribute. The
effect of strong bias voltage and different lead-to-dot connections on
Aharonov-Bohm oscillations in the conductance is also discussed
Frequency selection by soliton excitation in nondegenerate intracavity downconversion
We show that soliton excitation in intracavity downconversion naturally
selects a strictly defined frequency difference between the signal and idler
fields. In particular, this phenomenon implies that if the signal has smaller
losses than the idler then its frequency is pulled away from the cavity
resonance and the idler frequency is pulled towards the resonance and {\em vice
versa}. The frequency selection is shown to be closely linked with the relative
energy balance between the idler and signal fields.Comment: 5 pages, 3 figures. To appear in Phys Rev Let
Patterns and localized structures in bistable semiconductor resonators
We report experiments on spatial switching dynamics and steady state
structures of passive nonlinear semiconductor resonators of large Fresnel
number. Extended patterns and switching front dynamics are observed and
investigated. Evidence of localization of structures is given.Comment: 5 pages with 9 figure
- …
