10,831 research outputs found

    Lattice model for the surface states of a topological insulator with applications to magnetic and exciton instabilities

    Full text link
    A surface of a strong topological insulator (STI) is characterized by an odd number of linearly dispersing gapless electronic surface states. It is well known that such a surface cannot be described by an effective two-dimensional lattice model (without breaking the time-reversal symmetry), which often hampers theoretical efforts to quantitatively understand some of the properties of such surfaces, including the effect of strong disorder, interactions and various symmetry-breaking instabilities. Here we formulate a lattice model that can be used to describe a {\em pair} of STI surfaces and has an odd number of Dirac fermion states with wavefunctions localized on each surface. The Hamiltonian consists of two planar tight-binding models with spin-orbit coupling, representing the two surfaces, weakly coupled by terms that remove the extra Dirac points from the low-energy spectrum. We illustrate the utility of this model by studying the magnetic and exciton instabilities of the STI surface state driven by short-range repulsive interactions and show that this leads to results that are consistent with calculations based on the continuum model as well as three-dimensional lattice models. We expect the model introduced in this work to be widely applicable to studies of surface phenomena in STIs

    Proton electron elastic scattering and the proton charge radius

    Full text link
    It is suggested that proton elastic scattering on atomic electrons allows a precise measurement of the proton charge radius. Very small values of transferred momenta (up to four order of magnitude smaller than the ones presently available) can be reached with high probability.Comment: 4 pages, 4 figure

    Sharp transition for single polarons in the one-dimensional Su-Schrieffer-Heeger model

    Get PDF
    We study a single polaron in the Su-Schrieffer-Heeger (SSH) model using four different techniques (three numerical and one analytical). Polarons show a smooth crossover from weak to strong coupling, as a function of the electron-phonon coupling strength λ\lambda, in all models where this coupling depends only on phonon momentum qq. In the SSH model the coupling also depends on the electron momentum kk; we find it has a sharp transition, at a critical coupling strength λc\lambda_c, between states with zero and nonzero momentum of the ground state. All other properties of the polaron are also singular at λ=λc\lambda = \lambda_c, except the average number of phonons in the polaronic cloud. This result is representative of all polarons with coupling depending on kk and qq, and will have important experimental consequences (eg., in ARPES and conductivity experiments)

    QED radiative corrections to virtual Compton scattering

    Get PDF
    The QED radiative corrections to virtual Compton scattering (reaction epforthefirstordersoftphotonemissioncontributions.Furthermore,afullnumericalcalculationisgivenfortheradiativetail,correspondingwithphotonemissionprocesses,wherethephotonenergyisnotverysmallcomparedwiththeleptonmomenta.Wecompareourresultswithexistingworksonelasticelectronprotonscattering,andshowforthee p for the first order soft-photon emission contributions. Furthermore, a full numerical calculation is given for the radiative tail, corresponding with photon emission processes, where the photon energy is not very small compared with the lepton momenta. We compare our results with existing works on elastic electron-proton scattering, and show for the e p \to e p \gamma$ reaction how the observables are modified due to these first order QED radiative corrections. We show results for both unpolarized and polarized observables of the virtual Compton scattering in the low energy region (where one is sensitive to the generalized polarizabilities of the nucleon), as well as for the deeply virtual Compton scattering

    Bone mineralization and vascularization in bisphosphonate-related osteonecrosis of the jaw: an experimental study in the rat

    Get PDF
    OBJECTIVES: Pathogenesis of bisphosphonate-related osteonecrosis of the jaws (BRONJ) is not fully explained. An antiangiogenic effect of bisphosphonates (BPs) or an altered bone quality have been advocated. The aims of the present study were to analyze alveolar mandibular vascularization and bone quality in rats with BRONJ. MATERIALS AND METHODS: Thirty-eight Sprague-Dawley rats were randomized into two groups: zoledronic acid (ZA), n = 27, and control (CTRL) n = 11. The ZA group received a weekly IV injection of ZA (100 μg/kg) during 10 weeks. The CTRL group received saline. After 6 weeks, extraction of the right mandibular molars was performed. Rats were sacrificed after 14 weeks. Microtomography characterized bone lesions and vascularization after injection of a radio-opaque material. Raman microspectroscopy evaluated bone mineralization. RESULTS: Fifty-five percent of ZA rats presented bone exposure and signs of BRONJ. None sign was found at the left hemimandible in the ZA group and in the CTRL group. Vascular density appeared significantly increased in the right hemimandibles of the CTRL group compared to the left hemimandibles. Vascularization was reduced in the ZA group. A significantly increased of the mineral-to-amide ratio was found in the alveolar bone of ZA rats by Raman microspectroscopy. CONCLUSIONS: In a rat model of BRONJ, microtomography evidenced osteonecrosis in BRONJ. Raman spectroscopy showed an increased mineralization. Vascularization after tooth extraction was impaired by ZA. CLINICAL RELEVANCE: Prolonged BP administration caused an increase in the mineralization and a quantitative reduction of the vascularization in the alveolar bone; both factors might be involved concomitantly in the BRONJ pathophysiology

    SPIRAL 2 coupler preparation and RF conditioning

    No full text
    Proc. On LineInternational audienceFive radiofrequency coupler prototypes have been manufactured. Three of them will be mounted in the cryomodules of the SPIRAL 2 superconducting LINAC (LINear ACcelerator). This paper describes the coupler preparation and the first results of their conditioning

    New pixelized Micromegas detector with low discharge rate for the COMPASS experiment

    Full text link
    New Micromegas (Micro-mesh gaseous detectors) are being developed in view of the future physics projects planned by the COMPASS collaboration at CERN. Several major upgrades compared to present detectors are being studied: detectors standing five times higher luminosity with hadron beams, detection of beam particles (flux up to a few hundred of kHz/mm^{2}, 10 times larger than for the present Micromegas detectors) with pixelized read-out in the central part, light and integrated electronics, and improved robustness. Two solutions of reduction of discharge impact have been studied, with Micromegas detectors using resistive layers and using an additional GEM foil. Performance of such detectors has also been measured. A large size prototypes with nominal active area and pixelized read-out has been produced and installed at COMPASS in 2010. In 2011 prototypes featuring an additional GEM foil, as well as an resistive prototype, are installed at COMPASS and preliminary results from those detectors presented very good performance. We present here the project and report on its status, in particular the performance of large size prototypes with an additional GEM foil.Comment: 11 pages, 5 figures, proceedings to the Micro-Pattern Gaseous Detectors conference (MPGD2011), 29-31 August 2011, Kobe, Japa

    SPIRAL2 cryomodule production result and analyses

    Get PDF
    THIOB02International audienceThe production and qualification of the SPIRAL2 cryomodules are close to the end. Their performances arenow well established. This paper will explain the path followed to the good achievements, and show somestatistical analyses to be used for future projects. How far can we push the performances? What cryogenicsconsumption shall we take as design values

    Variations in water use by a mature mangrove of Avicennia germinans, French Guiana

    Get PDF
    In the tropical intertidal zones, little is known on water uptake by mangroves. Transpiration rates are generally measured at leaf level, but few studies exist on water use at tree or stand levels. The objective of this study was to measure sap flow in trees of different sizes to appreciate the range of variation in water use that may exist in a site dominated by 80% mature Avicennia germinans. The results showed that from the dry to the wet season the mean water use increased from 3.2 to 5.3 dm3 d−1 in small trees (DBH ∼ 13 cm), from 11.5 to 30.8 dm3 d−1 in medium trees (∼24 cm) and from 40.8 to 64.1 dm3 d−1 in large ones (∼45 cm). Sapwood remained active up to a depth of 8 cm with radial variations within the stem. Weak correlations were obtained with VPD and net radiation. This study confirmed that transpiration was larger under low levels of salinity. Water use at stand level (∼1900 living stems ha−1) was estimated to be in the range of 5.8 to 11.8 m3 ha−1 d−1 according to the season

    Strontium ranelate decreases the incidence of new caudal vertebral fractures in a growing mouse model with spontaneous fractures by improving bone microarchitecture

    Get PDF
    Summary Young mice over-expressing Runx2 fail to gain bone relative to wild type mice with growth and present spontaneous fractures. It allows, for the first time in rodents, direct assessment of anti-fracture efficacy of strontium ranelate which was able to decrease caudal vertebrae fracture incidence through an improvement of trabecular and cortical architecture. Introduction The aim was to investigate whether strontium ranelate was able to decrease fracture incidence in mice over-expressing Runx2, model of severe developmental osteopenia associated with spontaneous vertebral fractures. Methods Transgenic mice and their wild type littermates were treated by oral route with strontium ranelate or vehicle for 9 weeks. Caudal fracture incidence was assessed by repeated X-rays, resistance to compressive loading by biochemical tests, and bone microarchitecture by histomorphometry. Results Transgenic mice receiving strontium ranelate had significantly fewer new fractures occurring during the 9 weeks of the study (−60%, p < 0.05). In lumbar vertebrae, strontium ranelate improves resistance to compressive loading (higher ultimate force to failure, +120%, p < 0.05) and trabecular microarchitecture (higher bone volume and trabecular number, lower trabecular separation, +60%, +50%, −39%, p < 0.05) as well as cortical thickness (+17%, p < 0.05). In tibiae, marrow cavity cross-section area and equivalent diameter were lower (−39%, −21%, p < 0.05). The strontium level in plasma and bone was in the same range as the values measured in treated postmenopausal women. Conclusions This model allows, for the first time, direct assessment of anti-fracture efficacy of strontium ranelate treatment in rodents. In these transgenic mice, strontium ranelate was able to decrease caudal vertebral fracture incidence through an improvement of trabecular and cortical architecture
    corecore